M.Sc Bioinformatics

https://pathfinderacademy.in/ Question Booklet No.... 362

(To be filled u	p by the candidate by blue/blo	ack ball-point pen)
Roll No.		
Roll No. (Write the digits in words)	code No (4.	93)
Serial No. of OMR Answer Sheet		
Day and Date	(2016)	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं।

[No. of Printed Pages: 32+2

16P/212/24

No. of Questions: 150

Time: 21/2 Hours

Full Marks: 450

Note:

- (1) This paper comprises of Two Sections, viz., Section—A and Section—B having 30 Multiple Choice Questions in Section—A, and 120 Multiple Choice Questions in Section—B comprising 40 questions of Biology, 40 questions of Chemistry and 40 questions of Physics. A candidate has to attempt all 150 questions.
- (2) Attempt as many questions as you can. Each question carries 3 marks.
 One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
- (3) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

Section—A

1. The slope of tangent to the curve represented by $x = t^2 + 3t - 8$ and $y = 2t^2 - 2t - 5$ at the point M(2, -1) is

(1) $\frac{7}{6}$

(2) $\frac{2}{3}$

(3) $\frac{3}{2}$

 $(4) \frac{6}{7}$

(161)

1

(P.T.O.)

- 2. If $f(x) = \frac{x^2 1}{x^2 + 1}$ for every real number, then minimum value of f
 - is equal to −1
 - (2) is equal to 1
 - (3) does not exist
 - (4) is not attained even though f is bounded
- 3. If $y = \log \tan \left(\frac{\pi}{4} + \frac{\pi}{2} \right)$, then $\frac{dy}{dx}$ is
 - (1) 0
- $(2) \cos x$
- (3) $\sec x$
- $(4) \sec x$
- The slope of tangent is zero at (x_1, y_1) then the equation of tangent at (x_1, y_1) is
 - (1) $y_1 = mx_1 + c$ (2) $y_1 = mx_1$
- (3) $y y_1$

- 5. The value of $\int \frac{dx}{x+\sqrt{x}}$ is
 - (1) $\log (+\sqrt{x})$

(2) $\frac{1}{2} \log (1 + \sqrt{x})$

(3) $\log(x + \sqrt{x})$

- (4) $2 \log (1 + \sqrt{x})$
- A coin is tossed three times, what is the probability that it lands on heads exactly one time?
 - (1) 0.125
- (2) 0.250
- (3) 0.375
- (4) 0.333
- The area included between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is 7.
 - (1) $16\frac{a^3}{2}$
- (2) $\frac{9}{2}a^2$ (3) $14\frac{a^3}{2}$ (4) $\frac{a^2}{4}$

8.	The difference $f(x) = \cos x + \frac{1}{2}$	between the cos $2x - \frac{1}{3}\cos 2x$	ne greatest s 3x is	and least	values of th	e function
	(1) $\frac{2}{3}$	(2) ⁸ / ₇	(3)	94	(4) $\frac{3}{8}$	
9.	The value of					
		l a	$\lim_{x \to \frac{\pi}{4}} \frac{\sin \alpha - \cos \alpha}{\alpha - \frac{\pi}{4}}$	esα		
	is					
	(1) $\sqrt{2}$	(2) 2	(3)	1	(4) 0	
10.	If \vec{a} , \vec{b} , \vec{c} are three $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$	e vectors, su	ch that $\vec{a} + \vec{b}$	$c + c = 0, \alpha $	$ =1, \overrightarrow{b} =2, $	\overrightarrow{c} = 3, then
	(1) 0	(2) -7	(3)	7	(4) 1	
11.	If the difference mean and media	between me	an and mod	e is 63, the	n the difference	ce between
	(1) 21	(2) 31.5	(3)	48-5	(4) 189	
12.	The mean of 100 the resulting mea	observations an will be	is 40. If one	of observati	ons 50 is repla	ced by 60,
	(1) 50	(2) 30	(3)		(4) 40·10	
13.	The probability th	nat a leap yo	ear selected	at random (contains 53 co	1
	(1) $\frac{1}{7}$	(2) $\frac{7}{366}$	(3)	26 83	(4) $\frac{2}{7}$	indays is
(161)			3		•	
						(P.T.O.)

	n.			
14.	The empirical rela	ationship among mo	ean, median and m	node is
	(1) Mode = 3 Med	lian – 2 Mean	(2) $Mean = 3 Mod$	le - 2 Median
	(3) Median = 3 M	ode – 2 Mean	(4) $Mean = 2 Mod$	le – 3 Mean
15.	The mode of the in	dividual series 8, 9,	, 11, 12, 12, 10, 15,	16, 12, 17, 9, 12, 10 is
	(1) 10	(2) 12	(3) 16	(4) 17
16.	If 50% of the observat		s are less than 60, t	then the median of the
	(1) 30	(2) 45		(4) 120
17.	The product 32 (3	$(32)^{\frac{1}{6}} (32)^{\frac{1}{36}} \cdots \text{ up to}$	infinity is equal to	0
	(1) 0	(2) 32	(3) 64	(4) ∞
18.	A sample consist deviation?	sts of four observ	ations {1, 3, 5, 7}.	What is the standard
	(1) 2	(2) 0.258	(3) 6	(4) 6.67
19.	The sum of all t	wo-digit odd natur	al numbers is	
	(1) 2475	(2) 2530	(3) 4905	(4) 5049
20.	The sum of serie	es	1 2 5	
		$1 + \frac{1}{5} + \frac{1.3}{5.10}$	+ \frac{1.3.3}{5.10.15} + \dots	
			Tw. 51-11. (1971)	
	is	_	(3) $\sqrt{\frac{5}{3}}$	(4) $\sqrt{\frac{3}{5}}$
	(1) $\sqrt{3}$	(2) √5	$(3) \sqrt{3}$	$\sqrt{5}$

21.	A CPU generally	y contains				
	(1) registers and	d ALU				
	(2) a control an	d timing section	w w			
	(3) instruction	decoding circuit				
	(4) All of the al	bove				
22.	When the decim binary digits ne	al number 9 is co eded is	nverted to the binar	y number, the number of		
	(1) 3	(2) 4	(3) 5	(4) 6		
23.	Which memory	is volatile?				
	(1) RAM	(2) ROM	(3) EPROM	(4) PROM		
24.	The heart of any	y computer is the	:			
	(1) CPU	(2) memory	(3) I/O unit	(4) disks		
2 5.	Which of the fol	lowing computers	s is the least power.	ful2		
	(1) Minicompute		(2) Microcompu			
	(3) Mainframe c	omputer	(4) Supercompt	2		
26.	World Wide Web	is	1			
	(1) another nam	e for Internet				
	(2) world wide c	Onnection for same	Inuters .			
	 (2) world wide connection for computers (3) a collection of linked information residing on computers connected by the 					
	(4) a collection o	f world wide infor	mation	the same teachers by the		
161)						
•		.	5			
				(P.T.O.)		

27 .	All of the following are examples of input devices, except a				
	(1) scanner (2) mouse	(3)	keyboard (4) printer		
28.	The term Gigabyte refers to				
	(1) 1024 bytes	(2)	1024 kilobytes		
	(3) 1024 megabytes	(4)	1024 gigabytes		
29.	Verification of a login name and pas	swo	rd is known as		
	(1) authentication	(2)	accessibility		
	(3) configuration	(4)	logging in		
30.	Two broad categories of software are	е	E 6		
	(1) word processing and spreadshee	t			
	(2) transaction and application				
	(3) Windows and Mac OS				
	(4) system and application				

Section-B

BIOLOGY

31.	The principal eukaryotic DNA replica	ating enzyme is
	(1) DNA polymerase α	(2) DNA polymerase β
	(3) DNA polymerase γ	(4) DNA polymerase δ
		p.
32.	Corticotropin is produced by	
	(1) adrenal cortex	(2) adrenal medulla
	(3) uterus	(4) pituitary gland
33.	Which one of the following organelle	es is essential for life on earth?
	(1) Mitochondria	(2) Golgi bodies
	(3) Ribosome	(4) Plastids
34.	The largest living invertebrate is	
	(1) octopus (2) loligo	(3) starfish (4) mussel
		('/ masser
35.	Split genes were independently disco	overed by
×	(1) Watson and Crick	(2) Roberts and Sharp
	(3) Ochoa and Nirenberg	(4) Balimore and Temmin
(161)		1emmin
()	7	/D /T o

36.	Which amino acid is twenty first am	ino	acid found in any protein?
	(1) Tryptophan	(2)	Methionine
	(3) Solenocysteine	(4)	Proline
37.	The first amino acid discovered is		· ·
	(1) asparagine (2) cysteine	(3)	valine (4) glycine
38.	Which one of the following RNA has	cap	at its 5' end?
	(1) Prokaryotic m-RNA	(2)	Eukaryotic m-RNA
	(3) Prokaryotic t-RNA	(4)	Eukaryotic t-RNA
39.	In humans malaria is caused by bit (1) Culex male (3) Anopheles male	(2)	of Culex female Anopheles female
40.	Which one of the following arteries (1) Aorta (3) Lingual artery	(2)	ies deoxygenated blood? Pulmonary artery Carotid artery
41.	Total number of spinal nerves in head (1) 12 pairs (2) 31 pairs	uma (3	ans is 10 pairs (4) 43 pairs
		8	

42.	12. The sequence (according to merit) of human	live vital organs is
	(1) heart, brain, lungs, kidney, liver	
	(2) brain, heart, lungs, liver, kidney	
	(3) heart, kidney, liver, brain, lungs	
	(4) brain, lungs, liver, heart, lungs	* .
	2	
43.	Which one of the following hormones is require human?	red for every minute survival of
	(1) Growth hormone (2) Cortic	costeroid
	(3) Antidiuretic hormone (4) Cortic	cotropin
44.	4. ATP was first discovered by	
	(1) H. Krebs (2) Karl I	ohmann .
	(3) Mitchell (4) Lehni	
45.	5. Biosynthesis of glucose from non-carbohydrate	SOURCE '
	(1) glycogenesis (2) glycog	
	(3) glycolysis (4) None	*
46		or these
46.	5. Deficiency of vitamin B_{12} causes	
	(1) beri-beri (2) rickets	
	(3) pernicious anaemia (4) scurvy	· · · · · · · · · · · · · · · · · · ·
		4
(161)	9	
		-

47.	The largest energy reserve (in terms of kilocalories) in humans is				
	(1) blood glucose	8	(2) liver glycoger	1	
	(3) muscle glycoge	en	(4) adipose trigly	rcerol	
48.	Bacteriophage is a	a/an	Λ		
	(1) virus	(2) bacterium	(3) protozoon	(4) insect	
49.	The most heterog	enous (in size) RN	IA is		
	(1) t-RNA	(2) m-RNA	(3) r-RNA	(4) s-RNA	
50.	Which one of the	following is an in	nsect?		
	(1) Silverfish	(2) dogfish	(3) Starfish	(4) devilfish	
51.	Which one of the	following is a ph	otosynthetic bacter	rium?	
	(1) Blue green		(2) Rhodospirill	um	
	(3) Azospirillum		(4) Methanogen		
		f-llowing microh	es is used by astro	onaut?	
52.	Which one of the			(4) Diatoms	
	(1) Yeast	(2) Bacteria	(3) Chlorella	8	
=0	which one of th	e following is kno	wn as living fossil?)	
53.			(2) Cephalotax	us	
	(1) Taxus		(4) Gingo		
	(3) Pinus		(.,		
			10		
(16)	1)				

54.	Which one of the	following is know	vn as false fruit?
	(1) Litchi	(2) Apple	(3) Castor (4) Cashew nut
55.	Sugarcane is		
	(1) C ₂ plant	(2) C ₃ plant	(3) C ₄ plant (4) None of these
56.	In C ₃ plants, the	first stable produ	act is
	(1) PGA	(2) DHAP	(3) RUDP (4) PEPA
57.	Sucrose is		
	(1) monosaccharie	de	(2) oligosaccharide
	(3) polysaccharide	•	(4) disaccharide
58.	Late blight of pota	ato is caused by	
	(1) Pythium debar	yanum	(2) Phytophthora infestens
	(3) Peronospora de	estructior	(4) Synchytrium endobioticum
5 9 .	Which system of o	classification is pro	roposed by Benthum and Hooker?
	(1) Natural	(2) Artificial	(3) Numerical (4) Phylogenetic
60.	Raphano brassica	is a classical exan	The state of the s
	(1) autopolyploidy		(2) allopolyploidy
	(3) segmental poly	ploidy	(4) aneuploidy
(161)		11	

61.	Which one of the following is beverage?					
	(1) Flax	(2) Cotton	(3)	Tea	(4)	Coir
62.	Orientation of Z I	ONA is				
Ja.		ONA 18				
	(1) left handed		(2)	right handed		
	(3) both left and	right handed	(4)	c DNA		
63.	In artificial seeds	, the somatic embr	yoid	s are encapsul	ated	by
	(1) wax		(2)	fibre paper		
	(3) cellophane pa	per	(4)	Ca-algenate		
64.	NBRI is situated	at				
	(1) Howrah	(2) Darjeeling	(3)	Lucknow	(4)	Delhi
65.	Staminal tube is	formed in the flow	er o	f		
	(1) China rose	(2) Datura	(3)	Marigold	(4)	Gladiolus
66.	Ribosome is the	site for the synthe	sis c	of		
	(1) carbohydrates	S	(2)	proteins		
	(3) steroids		(4)	lipids	<u> </u>	
67.	The drug chlorar	nphenicol blocks				
	(1) cell-wall synt	thesis	(2) translation-te	rmii	nation
	(3) polypeptide	chain elongation	(4	polypeptide o	hair	n initiation
0.0000000000000000000000000000000000000			12			
1161	.)					

00.	which brings about stomatal closure under water stress?					
	(1) Abscisis acid	(2) Ethylene				
	(3) Ferulic acid	(4) Coumarin				
69.	Male gametophyte in angiosperm	is				
	(1) anther (2) stamen	(3) pollen sac (4) pollen				
70.	Which of these ecosystems has the metre?	ne lowest net primary production per square				
	(1) A salt marsh	(2) An open ocean				
	(3) A coral reef	(4) A grassland				

CHEMISTRY

71.	Which of the follo	wing will act as a	an acid in liquid SO ₂ ?			
	(1) Na ₂ SO ₃	(2) HCl	(3) SOCl ₂	(4) K ₂ SO ₃		
72 .	Which of the follo	wing is lux-flood l	pase?			
	(1) NaOH	(2) SiO ₂	(3) CO ₂	(4) Na ₂ O		
73 .	Relative order of	Lewis acid strengt	h is			
	(1) $BF_3 > BCl_3 > E$	$BBr_3 > BI_3$	(2) BF ₃ < BCl ₃ <	$BBr_3 < BI_3$		
	(3) $BCl_3 > BF_3 > B$	$Br_3 > BI_3$	(4) BCl ₃ < BF ₃ <	$BBr_3 < BI_3$		
74.	The metallic char	acter of beryllium	is due to			
	(1) partially filled	2s band	(2) completely filled 2s band			
	(3) overlap of 2s	and 2p bands	(4) empty 2s ba	nd		
75 .	Which of the follo	owing has the high	nest lattice energy	?		
	(1) NaF	(2) KF	(3) CsF	(4) RbF		
76.	Which oxide of c	hlorinė is a mixed	anhydride?			
	(1) Cl ₂ O	(2) ClO ₂	(3) Cl ₂ O ₃	(4) Cl ₂ O ₇		
77.	The chemical for	mula of hypophos	phoric acid is			
	(1) H ₃ PO ₄	(3) H DO	(9) $H_4P_2O_5$	(4) $H_4P_2O_6$		
(161	.)		14			
1	(b)					

78.	. Which of the foll	Which of the following species possesses the highest bond order?						
	(1) O ₂	(2) O ₂ ⁺	(3) O ₂	(4) O ₂ ²⁻				
79.	Which of the foll	owing is an explo	osive?					
	(1) PCl ₃	(2) SbCl ₃	(3) NCl ₃	(4) BiCl ₃				
80.	S—S bond is pre	sent in						
	(1) S ₂ O ₆ ²⁻	(2) S ₂ O ₇ ²⁻	(3) $S_2O_5^{2-}$	(4) S ₂ O ₈ ²⁻				
81.	The formula of p	yrosilicate ion is						
	(1) SiO ₄ ⁴	(2) Si ₂ O ₇ ⁶	(3) Si ₃ O ₉ ⁶⁻	(4) Si ₆ O ₁₈ ¹²				
82.	The crystal field s	tabilization energy	v (CFSE) value for [T	$i(H_2O)_6 ^{3+}$ that has an				
			(3) 10162 cm ⁻¹					
83.	The reaction between the products	een NH ₄ Br and N	a metal in liquid am	monia (solvent) results				
	(1) NaBr, HBr	(2) NaBr, H ₂	(3) H ₂ , HBr	(4) NaBr 11				
84.	Among the following	ng pairs of ions/m	olecules, the one ha	ving the similar shape				
	(1) CO ₂ and H ₂ O		(2) BF ₃ and H ₃ C ⁺	P				
	(3) CCl ₄ and PtCl ₄		(4) NH. and BF3					
(161)		15	9					
				(P.T.O.)				

<i>85</i> .	A	triple	point	is
	200	ev		

(1) monovariant

(2) bivariant

(3) invariant

(4) trivariant

86. In electron capture

- (1) gamma rays are emitted
- (2) a neutron is formed
- (3) a positron is formed
- (4) an alpha particle is emitted

87. The number of molecules reacted or formed per photon of light absorbed is called

- (1) yield of the reaction
- (2) quantum yield
- (3) quantum efficiency
- (4) quantum productivity

88. Potassium crystallizes in b.c.c. structure. The coordination number of potassium in potassium metal is

- (1) 2
- (2) 4
- (3) 6
- (4) 8

89. A reaction proceeds with increase in both the enthalpy and entropy. The reaction will be spontaneous if

(1) $\Delta H = T \Delta S$

(2) $\Delta H > T \Delta S$

(3) $\Delta H < T \Delta S$

(4) None of the above

- The high electronic mobility of H+ ions is due to 90.
 - (1) the small size of the H+ ions
 - (2) the small charge of the H+ ions
 - (3) the high velocity of H+ ions
 - (4) the effective transfer of proton along a series of hydrogen bonded water molecules by arrangement of hydrogen bonds
- Which compound has bond angles nearest to 120°? 91.
 - (1) 0=c=s

(2) CHI₃

(3) $H_2C = 0$

- (4) H-C=C-H
- An increasing order of acidity of the following compounds 92.
 - (a) 3-Chloropropanoic acid
- (b) 2,2-Dichloropropanoic acid
- (c) 2-Chloropropanoic acid
- (d) Propanoic acid

is

(1) (a) < (b) < (c) < (d)

(2) (b) < (c) < (d) < (a)

(3) (d) < (b) < (c) < (a)

- (4) (d) < (a) < (c) < (b)
- When acetaldehyde is heated with Fehling solution, it gives a red precipitate of 93.
 - (1) Cu
- (2) Cu₂O
- (3) CuO
- (4) Cu₃O₂
- Which reaction intermediate is involved in the following reaction? 94.
 - 2-Methylbutane $\xrightarrow{\text{Br}_2, hv}$ 2-bromo-3-methylbutane (minor product)
 - (1) A secondary radical
- (2) A tertiary radical
- (3) A secondary carbocation
- (4) A tertiary carbocation

- 95. Which of the following compounds would give negative iodoform test with I₂ and aqueous NaOH?
 - (1) Ethanol
- (2) 2-Propanol
- (3) 2-Pentanone
- (4) 3-Pentanone
- 96. For a species to be aromatic, it should satisfy certain criteria. Identify them from the following
 - (1) The species should be planar
 - (2) It should be a cyclic conjugated system
 - (3) It must contain $(4n+2)\pi$ electrons
 - (4) All the above three
 - 97. Give the product of the following reaction

$$\begin{array}{c}
\text{CH}_2\text{CH}_3 \\
\text{CH}_3
\end{array}$$

$$\begin{array}{c}
\text{Na}_2\text{Cr}_2\text{O}_7/\text{H}^+ \\
\text{?}
\end{array}$$

- Which of the following alkenes cannot exhibit geometrical isomerism? 98.
 - (1) CH₂=CHCH₂CH₃

(2) DCH=CHCH2CH3

(3) CH₃CH=CHCH₃

- (4) $CH_3CH=C(CH_3)Cl$
- 99. The reagent commonly used to reduce carbonyl >C=O functional group to methylene >CH2 is
 - (1) H₂/Pt

(2) LiAlH

(3) H₂N—NH₂/OH⁻

- (4) NaBH
- Which of the following isomeric carbocations is the most stable? 100.

- An oxygen containing compound shows an absorption band at ~ 1700 cm⁻¹ and 101. no absorption band around 3300 cm⁻¹, 2700 cm⁻¹ or 1100 cm⁻¹. What class of
 - (1) Aldehyde

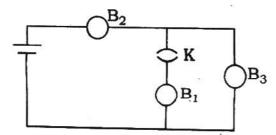
(2) Carboxylic acid

(3) Ketone

- (4) Ester
- Among the following choices, the group that activates the benzene ring toward 102.
 - (1) —NH₂
- (2) -NO₂
- (3) -Cl
- (4) -COOCH₃

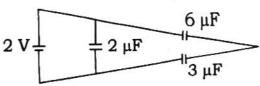
(161)

19


103.	It is possible to distinguish between	optical isomers by
	(1) IR spectroscopy	(2) UV spectroscopy
	(3) chemical tests	(4) polarimetry
104.	Which of the following best represent	its the strength of a hydrogen bond?
	(1) 5-10 kcal	(2) 60-80 kcal
	(3) 80-100 kcal	(4) 100-120 kcal
105.	On reduction with LiAlH ₄ , which of optically active product?	the following compounds would give an
	(1) Butanal (2) Propanone	(3) Butanone (4) 2-Nitropropane
106.	Phenol on treatment with bromine	in CS ₂ at 0 °C gives
	(1) m-bromophenol	(2) o- and p-bromophenol
	(3) 2,3,4-tribromophenol	(4) 2,4,6-tribromophenol
107	. The numbers of ¹ H—NMR signals compounds propanone and propan	or peaks given by two isomeric carbonyl
		(2) two and two
	(1) one and three (3) one and two	(4) two and three
	3. Among the following, a natural po	olymer is
108	3. Among the followings (2) Cellulose	(3) Nylon (4) Teflon
		20
(1	61)	

105.	THE TEACHOIT OF D	cinzene with emorni	e in the presence	or mon gives
	(1) benzyl chlorid	e	(2) benzoyl chlor	ide
	(3) BHC		(4) chlorobenzen	e .
110.	Glucose is conver	ted into ethanol by	the enzyme	
	(1) pepsin	(2) invertase	(3) zymase	(4) diastase

PHYSICS


- 111. On the mast of a ship there is a source of green light of wavelength 500 nm. If the refractive index of water is $\frac{4}{3}$ the colour and wavelength measured by a diver submerged in water by the side of the ship would be
 - (1) blue of wavelength 376 nm
 - (2) green of wavelength 376 nm
 - (3) red of wavelength 600 nm
 - (4) green of wavelength 500 nm
- 112. An inductance coil and a capacitor are connected to identical bulbs in two separate AC circuits. The bulb glows more brightly if
 - (1) the number of turns in the inductance coil is increased
 - (2) the separation between the plates of the capacitor is increased
 - (3) an iron rod is introduced into the inductance coil
 - (4) a dielectric is introduced in the gap between the plates of the capacitor
- 113. A 5 kg stone is thrown vertically up with a kinetic energy of 490 J. The height at which the kinetic energy of the stone becomes half of the original value is
 - (1) 5 m
- (2) 10 m
- (3) 2·5 m
- (4) 12·5 m

114. The identical bulbs are connected to a battery of steady e.m.f. as shown in the figure below with key K closed. What will happen to the brightness of bulbs B_2 and B_3 when the key is opened?

- (1) Brightness of the bulbs B_2 and B_3 decreases
- (2) Brightness of the bulbs B_2 and B_3 increases
- (3) Brightness of bulb B_2 decreases and that of B_3 increases
- (4) Brightness of bulb B_2 increases and that of B_3 decreases
- 115. A logical circuit can be constructed by using only
 - (1) OR gates
- (2) NOR gates
- (3) AND gates
- (4) NOT gates
- 116. If an object weighing 15 Newtons is lifted from ground to a height of 0.22 metre, the increase in its gravitational energy is approximately
 - (1) 0·33 J
- (2) 3·1 J
- (3) 3·2 J
- (4) 3·3 J
- 117. The moment of inertia of a circular disc of radius 2 m and mass 1 kg about an axis through its centre of mass and perpendicular to its plane is 2 kg m². Its moment of inertia about an axis parallel to this axis but passing through the edge of the disc will be
 - (1) 6 kg m²
- (2) 10 kg m²
- (0) 4 kg m²
- (4) 8 kg m²

118. Using a battery of 2 V the total energy stored in the capacitors shown in the figure below is

- $(1) 4 \mu J$
- (2) 6 mJ
- (3) 8 mJ
- (4) 12 μJ

During an ice age, the polar ice caps grow in size and the water level drops in 119. oceans all around the earth. This causes the earth's day to be

(1) stay the same

(2) shorter

(3) longer

(4) infinite

If the electrical potential of a single electron is 1 volt in an electrical field, what 120. would be the electric potential of 10 electrons at the same position in the field?

- (1) 1 volt
- (2) 0·1 volt
- (3) 10 volts (4) 100 volts

An infrared laser beam and an ultraviolet laser beam both have the same 121. number of photons. Which of the following is true?

- (1) Both laser beams have same energy
- (2) Ultraviolet laser beam has less energy
- (3) Infrared laser beam has more energy
- (4) Infrared laser beam has less energy

122.	If the objects listed below are all mo of quantum mechanics which one of	wing with the same speed, then on the basis them will have the shortest wavelength?
	(1) An electron (2) A proton	(3) The earth (4) A space-ship
123.	When an impurity is doped into a	semiconductor its conductivity
	(1) remains the same	(2) increases
22	(3) decreases	(4) becomes zero
124.	If a sample of radioactive isotope h original sample will remain at the	as a half life of one day, how much of the end of third day?
	(1) $\frac{1}{8}$ of original	(2) ½ of original
	(3) $\frac{1}{12}$ of original	(4) $\frac{1}{6}$ of original
125.	Which layer of the atmosphere refle	ects radio waves?
	(1) Stratosphere (2) Troposphere	
126.	Which of the following has no melti-	ing point?
	(1) Mercury	(2) Glass
	(3) Carbon dioxide	(4) Copper
127.	An intrinsic semiconductor at absolution (1) an extrinsic conductor	ute zero temperature would
	(1) an extrinsic conductor	(2) a perfect insulator
	(3) a perfect conductor	(4) a super conductor
(161)	25	Neer C
		(P.T.O.)

128.	A rotating frame of reference is		a g
	(1) pseudo inertial	(2)	inertial
	(3) non-inertial	(4)	pseudo non-inertial
129.	If a particle moves in a circle under proportional to distance r , then its		
	(1) proportional to r	(2)	independent of r
	(3) proportional to $\frac{1}{r}$	(4)	proportional to r^2
130.	The Franck-Hertz experiment proved	l th	at .
	(1) clectron orbits in atom are circu	ılar	
	(2) electron has spin		Contraction of the Contraction o
	(3) nucleus is positively charged		
	(4) internal energy of atom is quan	tize	d
			*
131.	If earth's atmosphere had no gases	the	e length of day would
	(1) increase		
	(2) be the same as at present		
	in winter and decreas	e in	summer

(4) decrease

132. <i>′</i>	The atmosphere of	f planet	Mars	is	characterized	by	the	following	feature
---------------	-------------------	----------	------	----	---------------	----	-----	-----------	---------

- (1) Surface atmospheric pressure same as earth's atmospheric pressure at sea level with equal proportion of CO₂ and CH₄
- (2) Surface atmospheric pressure approximately 1% of the earth's atmospheric pressure at sea level consisting mainly CH₄
- (3) Surface atmospheric pressure approximately 1% of earth's atmospheric pressure at sea level with equal proportion of CO₂ and CH₄
- (4) Surface atmospheric pressure approximately 1% of earth's atmospheric pressure at sea level consisting mainly CO₂
- 133. Two identical counter propagating Laser beams are linearly polarized in mutually perpendicular directions. The region of their overlap would exhibit light with
 - (1) uniform linear polarization
 - (2) periodic change in both linear and circular polarizations
 - (3) periodic change in linear polarization
 - (4) periodic change in circular polarization
- 134. For which of the following materials the magnetic susceptibility is independent of temperature?
 - (1) Paramagnetic

(2) Ferromagnetic

(3) Ferrite

(4) Diamagnetic

135.	Which of the following forces is the weakest?						
	(1) Magnetic	(2) Electrostatic	(3) Nuclear	(4) Gravitati	onal		
136.	Given that Planck of wavelength 660	constant is 6.6×1 nm in units of k	0 ⁻³⁴ J-second g-m/s would	the momentum of be	a photon		
	(1) 10 ⁻²⁷	(2) 2×10^{-27}	(3) 10 ⁻³⁰	(4) 2×10^{-30}			
137.	Assuming the mass of hydrogen molecules	is of a hydrogen atoule to be 4.8×10^2	om to be 1.67 N/m the vibra	×10 ⁻²⁷ kg and force ational frequency of	constant H ₂ would		
	(1) 1.4×10^{12} Hz		(2) 1·2×10	¹³ Hz			
	(3) 1.2×10^{14} Hz		(4) 1·4×10	¹⁶ Hz	Ÿ		
138.	When Zeeman spl observed in a dire components is	itting of an atomic ection perpendicula	line resulting tr to the magr	g from ${}^{1}D_{2} \rightarrow {}^{1}P_{1}$ transition that the second representation is the second representation of the second representat	ansition is		
	(1) 2	(2) 3	(3) 4	(4) 5			
139.	and ³ P in accorda	nfiguration of carb ance with Pauli exc ew of the following	lusion princip	s to three energy state	ates ¹ D, ¹ S		
	(1) Lande interva	al rule					
	(2) Hund's rule	2					
		spondence principl	e ·				
	(4) Sommerfeld	rule					
(161	ů.		28	x x			

- 140. Abnormally large isotope shifts are observed in spectral lines of heavy elements with mass number greater than 50. This has been explained in terms of
 - (1) mass effect of the nucleus
 - (2) charge distribution on the nucleus as a function of neutron number
 - (3) nuclear magnetic moment and orbital motion of electron
 - (4) nuclear magnetic moment and electron spin
- 141. The lightning discharge between a cloud and flat country originates due to
 - (1) a positively charged cloud with its potential positive than earth underneath
 - (2) a cloud with electron accumulation at the top and positive charges at the bottom
 - (3) an electrically homogeneous cloud
 - (4) a cloud with negative bottom with its potential more negative than the earth underneath
- 142. If α is the atomic polarizability, N the number of atoms per unit volume and K is the dielectric constant, then Clausius-Mossotti equation for liquids is given by

$$(1) K - 1 = \frac{N\alpha}{1 - \frac{N\alpha}{3}}$$

$$(2) K+1=\frac{N\alpha}{1-\frac{N\alpha}{3}}$$

(3)
$$K+1=\frac{N\alpha}{1+\frac{N\alpha}{3}}$$

$$(4) K - 1 = \frac{N\alpha}{1 + \frac{N\alpha}{3}}$$

When electric current flows in a loop it gives rise to magnetic field. The magnetic 143. moment (µ) is normal to the plane of the loop and is related to the area (A) of the loop and the current (I) in the following manner

(1)
$$\mu = \frac{I}{A}$$

(1)
$$\mu = \frac{I}{A}$$
 (2) $\mu = \frac{I^2}{A}$ (3) $\mu = IA$ (4) $\mu = I^2 A$

(3)
$$\mu = IA$$

$$(4) \mu = I^2 A$$

A changing magnetic flux through a coil gives rise to an induced e.m.f. in the 144. coil that tends to oppose the change in the magnetic flux through it. This method of finding the direction of the induced e.m.f. is known as

- (1) Fleming's right-hand rule
- (2) Fleming's left-hand rule

(3) Faraday's rule

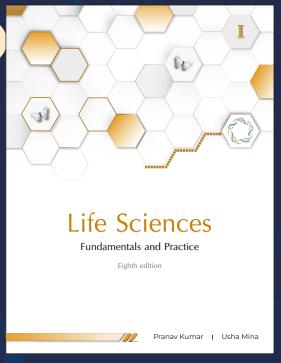
(4) Lenz's rule

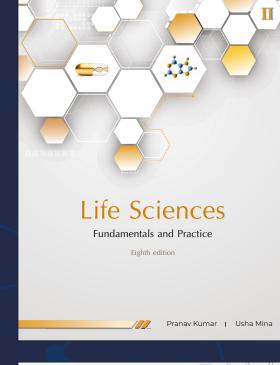
When there is an alternating current through an inductance, energy flows back 145. and forth between it and the rest of the circuit but the average rate at which energy is delivered to the circuit is zero. The inductance is therefore known as

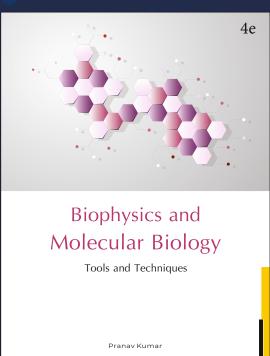
- (1) a dissipative element
- (2) an inactive element
- (3) a nondissipative element
- (4) a magnetic element

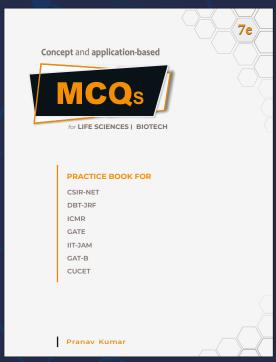
For frequencies from a few kilo cycles to some hundreds of megacycles, electromagnetic signals and power are transmitted via coaxial lines consisting of 146. a central wire and an outer conductor. What would happen if the central wire is removed from the coaxial line?

- (1) The electromagnetic power will stop
- (2) It can still carry electromagnetic power
- (3) It will result in minor oscillations
- (4) There will be violent oscillators


30


- 147. Many metals reflect visible light very well at the surface and very little goes inside to be absorbed. This happens because
 - (1) imaginary part of their refractive index is very small
 - (2) real part of their refractive index is very large
 - (3) real part of their refractive index is very small
 - (4) imaginary part of their refractive index is very large
- 148. In a metallic beam there is a surface passing through the middle of its thickness that is known as the neutral surface to make the beam stiff against bending
 - (1) as much material as possible should be put far from the neutral surface
 - (2) most of the material should be put near the neutral surface
 - (3) material should be uniformly distributed in the thickness of the beam
 - (4) beam should have a circular cross-section
- 149. In the Ramsden eyepiece the cross-wire is placed
 - (1) between the field lens and the eye lens
 - (2) behind the eye lens
 - (3) in front of the field lens
 - (4) just in front of the eye lens


- 150. Michelson-Morley experiment is famous because it led to the conclusion that
 - (1) light travels in straight line
 - (2) light waves require a medium called ether
 - (3) there is no ether in space
 - (4) light travels as particles


* * *

MSc Entrance Exam Combo Set

Biotechnology & Life Sciences

https://www.amazon.in/Pathfinder-Academy-Biotechnology-Sciences-Entrance/dp/8190642766

https://www.flipkart.com/pathfinder-academy-m-sc-biotechnology-life-sciences-entrance-exam-combo-set/p/itmegchtfm9nkytk?

Pathfinder Academy

pathfinderacademy.in | 9818063394

https://pathfinderacademy.in/

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं० और ओ० एम० आर० पत्र सं० की प्रविष्टियों में उपरिलेखन की अनुमित नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ॰एम॰आर॰ उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अध्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।