| Set | No. | 1 |
|-----|-----|---|
| Ser | MU. | 1 |

18P/292/25

2607

| otal No. of Printed Pages : 28       | Question Booklet No                  |
|--------------------------------------|--------------------------------------|
| (To be filled up by the cand         | lidate by blue/black ball-point pen) |
| Roll No.                             |                                      |
| Roll No. (Write the digits in words) | 2018)                                |
| Serial No. of OMR Answer Sheet       |                                      |
| Centre Code No.                      |                                      |
| Day and Date                         | (Signature of Invigilator)           |

#### INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the OMR Answer Sheet)

- Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that it page/que tion is missing. In case of faulty Question Booklet bring it to the notice of the Superint indent/Invigilators immediately to obtain a fresh Question Booklet.
- Do not bring any loose paper, writter or blank, inside le Exami ation Hall except the Admit Card.
- A separate OMR Answer Sheet is given. It should not be folded of mutilated. A second OMR Answer Sheet shall not be provided Only the OMR Answer Sheet will be evaluated.
- Write all the entries by blue/black ball pen in the space provided above.
- On the front page of the OMR Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom, Also, write the Question Booklet Number, Centre Code Number and the Set Number (wherever applicable) in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question ooklet No. and Set No. (if any) on OMR Answer Sheet and also Roll No. and OMR Answer Sheet Serial No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the Invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the OMR Answer Sheet by darkening the appropriate circle in the corresponding row of the OMR Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the OMR Answer Sheet.
- For each question, darken only one circle on the OMR Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. On completion of the Test, the Candidate must handover the OMR Answer Sheet to the Invigilator in the examination room/hall. However, candidates are allowed to take away Text Booklet and copy of OMR Answer Sheet with them.
- Candidates are not permitted to leave the Examination Hall until the end of the Test.
- If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

उपर्यक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं।

#### SPACE FOR ROUGH WORK

रफ़ कार्य के लिए जगह

No. of Questions: 120

Full Marks: 360

Note:

- Attempt as many questions as you can. Each question carries 3 marks.
   One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- The Mathematics of exponential growth in micro-organisms can be expressed as
  - $(1) \log N_o = n \log 2 + \log N$
- (2)  $n \log 2 = \log N + \log N_o$

(3)  $\log N = 2 \log N_o$ 

- (4)  $\log N = \log N_o + n \log 2$
- 2. Malolactic fermentation is carried out during the production of
  - (1) Beer
- (2) Wine
- (3) Biofuels
- (4) Cheese

51)

https://pathfinderacademy.in/

| 3.   | Cyanotoxins are pro              | duced by            |       |                 |                        |
|------|----------------------------------|---------------------|-------|-----------------|------------------------|
|      | (1) Green algae                  |                     | (2)   | Blue-green alg  | gae                    |
|      | (3) Red algae                    |                     | (4)   | Yellow-green a  | algae                  |
|      |                                  |                     |       |                 |                        |
| 4.   | In a scheme of clas              | sification, genetic | ally  | related groups  | represent a            |
|      | (1) Clone (2                     | 2) Clade            | (3)   | Kingdom         | (4) Domain             |
|      |                                  |                     |       |                 |                        |
| 5.   | Which one of the fo              | llowing is not for  | ınd   | in phytoplasm   | a cell membrane?       |
|      | (1) Proteins (2                  | 2) Lipids           | (3)   | Sterols         | (4) Fatty acids        |
|      |                                  |                     |       |                 |                        |
| 6.   | Clinically useful am             | inoglycosides incl  | lude  | :s              |                        |
|      | (1) Penicillin                   |                     | (2)   | Cephalosporin   |                        |
|      | (3) Streptomycin                 |                     | (4)   | Erythromycin    |                        |
|      |                                  |                     |       |                 |                        |
| 7.   | Dipicoline acid is f structures? | ormed mainly in     | ı w   | hich one of the | he following bacterial |
|      | (1) Flagella (2                  | ?) Sex pilus        | (3)   | Capsule         | (4) Endospore          |
| 8.   | E coli genomic DNA               | has approximate     | lv. L | ow many b       | 3. 83                  |
| 0.   | E. coli genomic DNA              | nas approximate.    | 1y 1  | low many base   | pairs?                 |
|      | (1) 4·5 Mb (2                    | 2) 1·8 Mb           | (3)   | 2·1 Mb          | (4) 8·5 Mb             |
| (61) |                                  | 2                   |       |                 |                        |
| (61) |                                  | 2                   |       |                 |                        |

| 9.   | Vaccination was developed by                |                                          |      |
|------|---------------------------------------------|------------------------------------------|------|
|      | (1) Stanley Prusiner                        | (2) Edward Jenner                        |      |
|      | (3) Paul Ehrlich                            | (4) Robert Koch                          |      |
| 10.  | Genomic concatemeric DNA is form            | med during the replication of            |      |
|      | (1) Bacteriophage                           | (2) Bacteria                             |      |
|      | (3) Yeast                                   | (4) Plant virus                          |      |
| 11.  | Bacteroids surrounded by a plant cyas       | ytoplasmic membrane form structures cal  | lled |
|      | (1) Infection thread                        | (2) Symbiosome                           |      |
|      | (3) Nod factors                             | (4) Root nodules                         |      |
| 12.  | Which one of the following has be nitrogen? | een used to enrich rice paddies with fir | xed  |
|      | (1) Azolla                                  | (2) Rhizobium                            |      |
|      | (3) Streptomyces                            | (4) Agrobacterium                        |      |
| 13.  | The cos sites of bacteriophage lambo        | da is made up of how many nucleotides?   |      |
|      | (1) 8 (2) 12                                | (3) 16 (4) 20                            |      |
| 14.  | Which one of the following is not a         | a mutagen?                               |      |
|      | (1) Ethidium bromide                        | (2) X-ray                                |      |
|      | (3) Transposons                             | (4) Salicylic acid                       |      |
| (61) |                                             | 3 (P.T.                                  | 0.)  |

https://pathfinderacademy.in/

| 15.           | The lac repressor fu                 | inctions as a                   |             |                 |       |                     |
|---------------|--------------------------------------|---------------------------------|-------------|-----------------|-------|---------------------|
|               | (1) Monomer (                        | 2) Dimer                        | (3)         | Trimer          | (4)   | Tetramer            |
|               |                                      |                                 |             |                 |       |                     |
| 16.           | A oxygenic phototro                  | oph, prochlorophy               | te, o       | contains        |       |                     |
|               | (1) Phycobilins and                  | chlorophyll <u>b</u>            |             |                 |       |                     |
|               | (2) Chlorophylls <u>a</u>            | and $\underline{b}$ , and no pl | nycol       | oilins          |       |                     |
|               | (3) Phycobilins and                  | chlorophylls <u>a</u> a         | nd <u>b</u> | 2               |       |                     |
|               | (4) Phycobilins and                  | l no chlorophylls               |             |                 |       |                     |
|               |                                      |                                 |             |                 |       |                     |
| 17.           | Which one of the f                   | ollowing is a MoF               | e pr        | otein?          |       |                     |
|               | (1) Dinitrogenase                    |                                 | (2)         | Dinitrogenase   | red   | uctase              |
|               | (3) 1,3-β-glucanase                  |                                 | (4)         | DNA polymera    | ase   |                     |
|               |                                      |                                 |             | 12 1001 121     |       |                     |
| 18.           | Taking up DNA by is due to the prese |                                 | an ii       | nherited proper | rty o | f a bacterium. This |
|               | (1) Com protein ge                   | nes                             | (2)         | Nif genes       |       |                     |
|               | (3) Trp operon                       |                                 | (4)         | siRNA           |       |                     |
|               |                                      |                                 |             |                 |       |                     |
| 19.           | A mutant with a g                    | rowth requiremer                | it for      | a specific nu   | trier | nt is known as      |
|               | (1) Autotroph                        | (2) Auxotroph                   | (3)         | Heterotroph     | (4)   | Phototroph          |
| ( <b>61</b> ) |                                      | 4                               |             |                 |       |                     |
| (61)          |                                      | 4                               |             |                 |       |                     |

| 20. | Some of the metabolic plasmids of ba          | cteria carry genes for enzymes that direct |  |  |  |
|-----|-----------------------------------------------|--------------------------------------------|--|--|--|
|     | (1) The formation of sex pili                 |                                            |  |  |  |
|     | (2) Destruction and modification of           | antibiotics                                |  |  |  |
|     | (3) Degradation of aromatic compou            | ınds                                       |  |  |  |
|     | (4) Killing of other bacteria                 |                                            |  |  |  |
|     |                                               |                                            |  |  |  |
| 21. | Chemoautotrophic bacteria derive en           | nergy for their physiological needs by     |  |  |  |
|     | (1) Oxidizing organic compounds               | (2) Reducing N <sub>2</sub>                |  |  |  |
|     | (3) Absorbing solar energy                    | (4) Oxidizing inorganic chemicals          |  |  |  |
|     |                                               |                                            |  |  |  |
| 22. | 'Red-rust of tea' disease is caused l         | by a member of                             |  |  |  |
|     | (1) Algae (2) Bacteria                        | (3) Plant viruses (4) Fungi                |  |  |  |
|     |                                               |                                            |  |  |  |
| 23. | The term cistron was given by                 |                                            |  |  |  |
|     | (1) Muller (2) Sutton                         | (3) Benzer (4) Nirenberg                   |  |  |  |
|     |                                               | 6                                          |  |  |  |
| 24. | The famous microbiologist, who generation was | disapproved the theory of spontaneous      |  |  |  |
|     | (1) Carl Woese                                | (2) Martin Beijerinck                      |  |  |  |
|     | (3) Louis Pasteur                             | (4) Stanley Miller                         |  |  |  |
|     |                                               |                                            |  |  |  |

5

(61)

(P.T.O.)

https://pathfinderacademy.in/

| 25.         | The | mode of nutri                      | ition of methanoge               | enic  | bacteria is                    |       |                       |
|-------------|-----|------------------------------------|----------------------------------|-------|--------------------------------|-------|-----------------------|
|             | (1) | Chemoautotro                       | phic                             | (2)   | Photoheterotro                 | phi   | c                     |
|             | (3) | Chemoorganot                       | rophic                           | (4)   | Auxotrophic                    |       |                       |
| 26.         | Sel | ect the mismat                     | tch :                            |       |                                |       |                       |
|             | (1) | Phycoerythrin                      | pigment — Non-p                  | hoto  | synthetic                      |       |                       |
|             | (2) | Heterocyst —                       | Anaerobic cell                   |       |                                |       |                       |
|             | (3) | Bacterial endo                     | ospores — Heat re                | sista | nt cells                       |       |                       |
|             | (4) | Ammonium ni                        | itrogen — Electron               | dor   | nor                            |       |                       |
| 27.         |     | e association ar<br>centrations of | nd dissociation of               | ribos | somal subunits                 | are   | dependent on the      |
|             | (1) | Mg ions                            | (2) Ca ions                      | (3)   | Na ions                        | (4)   | Mn ions               |
| 28.         |     | bacterial cell o                   | divides in every 20<br>urs?      | min   | utes, how man                  | y ba  | cterial cells will be |
|             | (1) | 16                                 | (2) 24                           | (3)   | 64                             | (4)   | 32                    |
| 29.         |     | main biologica<br>d and copper n   | al function of natur<br>nines is | ally  | occurring bacte                | ria a | associated with the   |
|             | (1) | To oxidize red                     | uced sulfur and fo               | orm   | H <sub>2</sub> SO <sub>4</sub> |       |                       |
|             | (2) | To convert am                      | monia to nitrate                 |       |                                |       |                       |
|             | (3) | To oxidize Fe <sup>+</sup>         | <sup>2</sup> to Fe <sup>+3</sup> |       |                                |       |                       |
|             | (4) | To fix N <sub>2</sub>              |                                  |       |                                |       |                       |
| <b>61</b> ) |     |                                    | 6                                |       |                                |       |                       |

| 30.  | When an old bacterial cu<br>growth phase will be                                      | lture is transfer     | rred to fresh basal medium, the la                                                                     |
|------|---------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------|
|      | (1) Prolonged                                                                         | (2)                   | Absent                                                                                                 |
|      | (3) Reduced                                                                           | (4)                   | Without any change                                                                                     |
| 31.  | When mutation occurs due base, it is called as                                        | to the substitu       | tion of a pyrimidine base by a purine                                                                  |
|      | (1) Transition                                                                        | (2) 1                 | Transgenic                                                                                             |
|      | (3) Transformation                                                                    | (4) 1                 | ransversion                                                                                            |
| 32.  | The 'Super Bug', a transgen caused by                                                 | ic bacterial stra     | in, was created to clean the pollution                                                                 |
|      | (1) Pesticides                                                                        | (2) E                 | Cutrophication                                                                                         |
|      | (3) Heavy metals                                                                      | (4) P                 | etroleum hydrocarbons                                                                                  |
| 33.  | How many quanta of light<br>equivalents (with the produ-<br>evolution of one molecule | iction of 4 redu      | required for the use of 4 positive cing equivalents), necessary for the molecules of H <sub>2</sub> O? |
|      | (1) 8 (2) 12                                                                          | (3) 6                 | (4) 4                                                                                                  |
| 34.  | The entire network of coplasmodesmata is referred                                     | ell cytoplasm o<br>as | of plant cells, interconnected by                                                                      |
|      | (1) Apoplast                                                                          | (2) S                 | pheroplast                                                                                             |
|      | (3) Symplast                                                                          | (4) P                 | rotoplast                                                                                              |
| (61) |                                                                                       | 7                     | (P.T.O.)                                                                                               |

| 701 <u>0100a</u> 8 | Which of the following is pr            | imary transporter?                               |
|--------------------|-----------------------------------------|--------------------------------------------------|
| 35.                | Which of the following is pr            |                                                  |
|                    | (1) Antiporter                          | (2) Symporter                                    |
|                    | (3) Uniporter                           | (4) ABC transporters                             |
| 36.                | Cyanobacteria differ from pu            | rple and green phototrophic bacteria because the |
|                    | (1) Show oxygenic photosyn              | nthesis                                          |
|                    | (2) Use H <sub>2</sub> S as an electron | donor                                            |
|                    | (3) Have a membrane-enclo               | osed nucleus                                     |
|                    | (4) Do not require light                |                                                  |
| 37.                | Which of the following is no            | ot a sink in the plants?                         |
|                    | (1) Flower bud                          |                                                  |
|                    | (2) Developing fruit                    |                                                  |
|                    | (3) Photosynthetically active           | e leaf                                           |
|                    | (4) A storage organ of the              | plant                                            |
| 38.                | Zygotene is characterised b             | у                                                |
|                    | (1) Synapsis, crossing-over,            | , tetrad formation                               |
|                    | (2) Synapsis, bivalents, cro            | essing-over                                      |
|                    | (3) Recombination nodules,              | , synapsis and bivalents                         |
|                    | (4) Bivalents, synapsis, tetr           | rad formation                                    |
| (C1)               |                                         | 8                                                |
| (61)               |                                         | O                                                |

| 39.  | Which of the following is arginine r                     | ch?                                         |
|------|----------------------------------------------------------|---------------------------------------------|
|      | (1) H1 (2) H2A                                           | (3) H2B (4) H3                              |
| 40.  | Cell cycle is regulated by the maste                     | r control molecules known as                |
|      | (1) Transferases                                         | (2) Lipases                                 |
|      | (3) Kinases                                              | (4) Dehydrogenases                          |
| 41.  | Which of the following is a microfila                    | ment?                                       |
|      | (1) Keratin (2) Actin                                    | (3) Desmin (4) Tubulin                      |
| 42.  | Which of the following is hemizygou                      | s?                                          |
|      | (1) Male mice                                            | (2) Male Drosophila                         |
|      | (3) Female Drosophila                                    | (4) Male plant of Melandrium                |
| 43.  | Which of the following combinations is evolution?        | s true as proponents of 'synthetic theory o |
|      | (1) T. Dobzhansky, R. A. Fisher, La                      | marck, J. B. S. Haldane, Ernst Mayr         |
|      | (2) T. Dobzhansky, R. A. Fisher, Da                      | rwin, J. B. S. Haldane, Ernst Mayr          |
|      | (3) T. Dobzhansky, R. A. Fisher, Hug                     | o de Vries, J. B. S. Haldane, Ernst Mayr    |
|      | (4) T. Dobzhansky, R. A. Fisher, J. I.<br>G. L. Stabbins | 3. S. Haldane, Ernst Mayr, Sewall Wrigh     |
| 44.  | 'Linkage map' is also referred to as                     |                                             |
|      | (1) Chromosome map                                       | (2) Physical map                            |
|      | (3) Restriction map                                      | (4) Ganetic map                             |
| (61) | 9                                                        | (P.T.O                                      |
|      |                                                          |                                             |

| 45.         |     | glycolysis fruct<br>the enzyme    | ose-  | 6-phosphate is | trai  | nsformed to fru | ictos | se 1,6-dip | ohosphat |
|-------------|-----|-----------------------------------|-------|----------------|-------|-----------------|-------|------------|----------|
|             | (1) | Hexokinase                        |       |                | (2)   | Phosphohexois   | some  | erase      |          |
|             | (3) | Phosphofructo                     | kina  | ise            | (4)   | Phosphotriosc   | iso   | merase     |          |
| 46.         | Ch  | itin is a                         |       |                |       |                 |       |            |          |
|             | (1) | Polypeptide                       |       |                | (2)   | Polysaccharide  | e     |            |          |
|             | (3) | Polyphosphate                     | ;     |                | (4)   | Lipid           |       |            |          |
| 47.         | Wh  | nich of the follo                 | win   | g enzyme is re | spon  | sible for DNA   | chai  | n elonga   | tion?    |
|             | (1) | DNA polymera                      | ise I |                | (2)   | DNA polymera    | ase l | I          |          |
|             | (3) | DNA polymera                      | ise I | II             | (4)   | RNA polymera    | ase   |            |          |
| 48.         | Aga | arose-gel electro                 | opho  | oresis is used | for s | eparating       |       |            |          |
|             | (1) | Proteins                          |       |                | (2)   | Nucleic acids   |       |            |          |
|             | (3) | Lipids                            |       |                | (4)   | Carbohydrates   | 3     |            |          |
| 49.         |     | ich of the folk<br>ough splitting |       |                |       |                 |       |            | in plant |
|             | (1) | Fe                                | (2)   | Mg             | (3)   | Mn              | (4)   | Cu         |          |
| 50.         | Psa | ammophytes gr                     | ow o  | on             |       |                 |       |            |          |
|             | (1) | Stone                             | (2)   | Saline land    | (3)   | Sand            | (4)   | Marshy     | lands    |
| <b>61</b> ) |     |                                   |       | 10             | V     |                 |       |            |          |
|             |     |                                   |       | 10             | 500   |                 |       |            |          |

| 51. | 'Stone leprosy' is caused by                                     |                                         |
|-----|------------------------------------------------------------------|-----------------------------------------|
|     | (1) Mycobacterium leprae                                         | (2) Lightening                          |
|     | (3) Acid rain                                                    | (4) Dust on sand                        |
| 52. | The site of glycosidation of lipids glycoproteins in the cell is | and proteins to produce glycolipids and |
|     | (1) Mitochondria                                                 | (2) Chloroplast                         |
|     | (3) Golgi complex                                                | (4) Lysosomes                           |
| 53. | One gene-one enzyme hypothesis w                                 | as given by                             |
|     | (1) Beadle and Tatum                                             | (2) Jacob and Monad                     |
|     | (3) Watson and Crick                                             | (4) Luria and Delbrick                  |
| 54. | Clathrin coated vesicles are meant                               | for                                     |
|     | (1) Extracellular traffic                                        | (2) Intracellular traffic               |
|     | (3) Coating vacuole                                              | (4) Protein synthesis                   |
| 55. | Which one of the following are term                              | inator codons?                          |
|     | (1) UAA, UAG, UGA                                                | (2) AUG, UAG, UGA                       |
|     | (3) UAC, AUG, UAG                                                | (4) AUG, ACG, GAG                       |
|     |                                                                  |                                         |

https://pathfinderacademy.in/

| 56.  | The starting tRNA of prokaryotes is loaded with                                                                        |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|      | (1) Valine (2) Methionine                                                                                              |  |  |  |  |  |
|      | (3) Tryptophan (4) Formylated methionine                                                                               |  |  |  |  |  |
| 57.  | Which of the following contains hydrolytic enzymes?                                                                    |  |  |  |  |  |
|      | (1) Dictyosomes (2) Peroxisomes (3) Lysosomes (4) Carboxysomes                                                         |  |  |  |  |  |
| 58.  | $K_m$ (Michaelis-Menten constant) is defined as                                                                        |  |  |  |  |  |
|      | (1) The substrate concentration at which all of the enzyme molecules are forming ES complex                            |  |  |  |  |  |
|      | (2) The substrate concentration at which <sup>3</sup> / <sub>4</sub> of the enzyme molecules are forming<br>ES complex |  |  |  |  |  |
|      | (3) The substrate concentration at which ½ of the enzyme molecules are forming<br>ES complex                           |  |  |  |  |  |
|      | (4) The substrate concentration at which \(\frac{1}{3}\) of the enzyme molecules are forming<br>ES complex             |  |  |  |  |  |
| 59.  | The study of genetic material recovered directly from environmental samples is known as                                |  |  |  |  |  |
|      | (1) Metagenomics (2) Proteomics                                                                                        |  |  |  |  |  |
|      | (3) Genomics (4) Metabolomics                                                                                          |  |  |  |  |  |
| 60.  | MAB stands for                                                                                                         |  |  |  |  |  |
|      | (1) Man and Biology (2) Man and Biosphere Programme                                                                    |  |  |  |  |  |
|      | (3) Map and Biology (4) Management and Biosphere                                                                       |  |  |  |  |  |
| (61) | 12                                                                                                                     |  |  |  |  |  |

| 61. | How many CO <sub>2</sub> r         | nolecules exit from                    | citr  | ic acid cycle?    |       |                    |
|-----|------------------------------------|----------------------------------------|-------|-------------------|-------|--------------------|
|     | (1) One                            | (2) Two                                | (3)   | Three             | (4)   | Four               |
| 62. | Which one of the delayed hypersens | following immuno                       | glob  | ulins is associa  | ated  | with anaphylactic  |
|     | (1) IgE                            | (2) IgA                                | (3)   | IgG               | (4)   | IgM                |
| 63. | A population of inc                | dividuals of species,                  | hav   | ing genetic diffe | ereno | ces is referred as |
|     | (1) Ecotype                        | (2) Ecad                               | (3)   | Ecotone           | (4)   | Biotype            |
| 64. | Which one of the                   | following gases is                     | mic   | robiocidal in na  | ature | e?                 |
|     | (1) Nitrogen                       |                                        | (2)   | Ethylene oxide    | e     |                    |
|     | (3) Hydrogen                       |                                        | (4)   | Oxygen            |       |                    |
| 65. | Edman's reagent i                  | s preferred for sequ<br>of reaction it | ueno  | e determination   | n of  | a protein because  |
|     | (1) Modifies and                   | cleaves only N-term                    | inal  | amino acid re     | sidu  | ie                 |
|     | (2) Modifies and                   | cleaves only C-term                    | inal  | amino acid re     | sidu  | ne                 |
|     | (3) Cleaves N-terr                 | ninal amino acid re                    | esid  | ue in native for  | m     |                    |
|     | (4) Cleaves C-terr                 | ninal amino acid re                    | esidi | ue in native for  | rm    |                    |
|     |                                    |                                        |       |                   |       |                    |

13

(61)

(P.T.O.)

| 66.  | In a dipeptide, peptide bond is generated between                         |                                              |  |  |  |  |  |  |
|------|---------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|--|--|
|      | (1) $\alpha$ -COOH of 1st and $\alpha$ -NH2 of 2                          | 2nd amino acid                               |  |  |  |  |  |  |
|      | (2) $\alpha$ -NH2 of 1st and $\alpha$ -COOH of 2nd amino acid             |                                              |  |  |  |  |  |  |
|      | (3) $\beta/\gamma$ -NH2 of 1st and $\beta/\gamma$ -COOH of 2nd amino acid |                                              |  |  |  |  |  |  |
|      | (4) $\alpha$ -C of 1st and $\alpha$ -C of 2nd ami                         | ino acid                                     |  |  |  |  |  |  |
| 67.  | Which one of the following stabilize                                      | es α-helix structure of a protein?           |  |  |  |  |  |  |
|      | (1) Peptide bonds                                                         | (2) Disulphide bonds                         |  |  |  |  |  |  |
|      | (3) Ionic bonds                                                           | (4) Hydrogen bonds                           |  |  |  |  |  |  |
| 68.  | Exposure of a native protein to he protein due to breaking of             | eat results into partial denaturation of the |  |  |  |  |  |  |
|      | (1) Disulphide bonds                                                      | (2) Hydrophobic interaction                  |  |  |  |  |  |  |
|      | (3) Hydrogen bonds                                                        | (4) Peptide bonds                            |  |  |  |  |  |  |
| 69.  | Enzymes, which do not follow non<br>cooperativity are                     | mal Michaelis-Menten kinetics and exhibi     |  |  |  |  |  |  |
|      | (1) Isoenzymes                                                            | (2) Coenzymes                                |  |  |  |  |  |  |
|      | (3) Allosteric enzymes                                                    | (4) Abzymes                                  |  |  |  |  |  |  |
| 70.  | Lactate dehydrogenase belongs to                                          | which major class of the enzymes?            |  |  |  |  |  |  |
|      | (1) Ligases                                                               | (2) Transferases                             |  |  |  |  |  |  |
|      | (3) Oxido-reductases                                                      | (4) Isomerases                               |  |  |  |  |  |  |
| (61) | 1                                                                         | 4                                            |  |  |  |  |  |  |
|      |                                                                           |                                              |  |  |  |  |  |  |

| 11.  | identity all aldose from the options given below |                                        |                  |  |  |
|------|--------------------------------------------------|----------------------------------------|------------------|--|--|
|      | (1) Dihydroxy acetone                            | (2) Glyceraldehyde                     |                  |  |  |
|      | (3) Xylulose                                     | (4) Ribulose                           |                  |  |  |
| 72.  | Which one of the following pairs                 | represents an isomer to eac            | h other?         |  |  |
|      | (1) D-glucose and L-glucose                      | (2) $\alpha$ -D-glucose and $\beta$ -D | )-glucose        |  |  |
|      | (3) D-glucose and D-mannose                      | (4) D-glucose and D-fru                | ctose            |  |  |
| 73.  | Identify the glycolytic enzyme wh<br>synthesis   | nich is associated with sub            | strate level ATP |  |  |
|      | (1) Phosphofructokinase                          | (2) Hexokinase                         |                  |  |  |
|      | (3) Pyruvate kinase                              | (4) Aldolase                           |                  |  |  |
| 74.  | Identify a decarboxylase out of th               | e TCA cycle enzymes given              | below            |  |  |
|      | (1) Isocitrate dehydrogenase                     | (2) Succinate dehydroge                | enase            |  |  |
|      | (3) Fumerase                                     | (4) Malate dehydrogena                 | se               |  |  |
| 75.  | The 'Fo' domain of the mitochonor represents     | lrial Fo-F1 complex is name            | ed so because it |  |  |
|      | (1) The protein fragment given no                | number                                 |                  |  |  |
|      | (2) The protein fragment that do                 | es not perform catalytic fun           | ction            |  |  |
|      | (3) Cofactor binding domain                      |                                        |                  |  |  |
|      | (4) Domain that confers oligomyo                 | in sensitivity to the comple           | х                |  |  |
| (61) |                                                  | 15                                     | (P.T.O.)         |  |  |
|      |                                                  |                                        |                  |  |  |

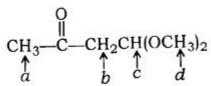
| 76.         | Which one of the following enzymes                    | s synthesize a cell signaling factor?    |     |
|-------------|-------------------------------------------------------|------------------------------------------|-----|
|             | (1) Cyclooxygenase                                    | (2) Cytochrome oxidase                   |     |
|             | (3) Cytochrome-Q-reductase                            | (4) Co-A reductase                       |     |
| 77.         | The protein part of an enzyme, functions, is known as | which utilizes cofactors for its cataly  | tic |
|             | (1) Apoenzyme                                         | (2) Coenzyme                             |     |
|             | (3) Holoenzyme                                        | (4) Native enzymc                        |     |
| 78.         | Which one of the following is an ar                   | mphoteric molecule?                      |     |
|             | (1) α-Glycine (2) Triglyceride                        | (3) Sucrose (4) Phospholipid             |     |
| 79.         | Out of the following lipids, which one                | e contains maximum number of fatty acid  | is: |
|             | (1) Cholesterol                                       | (2) Biological wax                       |     |
|             | (3) Prostaglandin                                     | (4) Triglyceride                         |     |
| 80.         | In a nucleotide structure, phospha                    | ite is attached to the ribose sugar by a |     |
|             | (1) Phosphoester bond                                 | (2) Phosphodiester bond                  |     |
|             | (3) Glycoside                                         | (4) Peptide                              |     |
| 81.         | 2'-deoxy-cytidine is a                                |                                          |     |
|             | (1) Nucleotide                                        | (2) Di-nucleotide                        |     |
|             | (3) Modified base                                     | (4) Nucleoside                           |     |
| <b>61</b> ) | 1                                                     | 16                                       |     |

| 82. | Which one of the following RI                                 | NAs assume tertiary struc                          | cture for its functions?  |
|-----|---------------------------------------------------------------|----------------------------------------------------|---------------------------|
|     | (1) Hn-RNA (2) mRNA                                           | A (3) tRNA                                         | (4) 5S rRNA               |
| 83. | During prokaryotic DNA syn                                    | thesis, RNA primers at la                          | agging strand are removed |
|     | (1) S1 nuclease                                               | (2) DNA polym                                      | nerase I                  |
|     | (3) DNA polymerase III                                        | (4) RNase II                                       |                           |
| 84. | Which analytical tool was use<br>serves as hereditary materia | ed by Hershey and Chase<br>I and not the proteins? | to demonstrate that DNA   |
|     | (1) Radiotracer technique                                     |                                                    |                           |
|     | (2) X-ray diffraction analysis                                | S                                                  |                           |
|     | (3) Spectrometry                                              |                                                    | ā.                        |
|     | (4) Density gradient centrifu                                 | igation                                            |                           |
| 85. | The polymerase that syntindependent manner is                 | hesizes a polynucleotid                            | e chain in a template     |
|     | (1) DNA Pol-I                                                 | (2) DNA Pol-III                                    |                           |
|     | (3) RNA polymerase                                            | (4) Poly-a poly:                                   | merase                    |
| 86. | Discovery of ribozymes asso                                   | ciates with                                        |                           |
|     | (1) RNA splicing                                              | (2) Transcription                                  | onal silencing            |
|     | (3) Translational silencing                                   | (4) DNA ligase                                     | activity                  |
|     |                                                               |                                                    |                           |

17

(61)

(P.T.O.)


| 87.  | Identify the factor       | that terminates  | s prokaryotic tra | enslation        |           |
|------|---------------------------|------------------|-------------------|------------------|-----------|
|      | (1) 1F2-GTP               | (2) 1F2          | (3) RF1           | (4) RG3          |           |
|      |                           |                  |                   |                  |           |
| 88.  | In a charged tRN          | A, amino acid is | s linked at       |                  |           |
|      | (1) 3'-end                |                  |                   |                  |           |
|      | (2) 5'-end                |                  |                   |                  |           |
|      | (3) D-loop                |                  |                   |                  |           |
|      | (4) Adjacent to a         | nti-codon seque  | nces              |                  |           |
|      |                           |                  |                   |                  |           |
| 89.  | A human recomb<br>because | inant gene can   | be successfully   | translated in E. | coli. Thi |
|      | (1) Genetic code          | is universal     |                   |                  |           |
|      | (2) Genetic code          | is degenerate ty | rpe               |                  |           |
|      | (3) E. coli and hu        | man have simil   | ar translational  | factors          |           |
|      | (4) E. coli and hu        | man have simil   | ar ribosomal or   | ganization       |           |
|      |                           |                  |                   |                  |           |
| 90.  | Which one is use          | d as a genetic   | vector?           |                  |           |
|      | (1) λ-Phage DNA           |                  | (2) Retrovir      | al RNA           |           |
|      | (3) Retrovial cDN         | A                | (4) RNA pr        | imer             |           |
| (61) |                           |                  | 18                |                  |           |
|      |                           |                  |                   |                  |           |

|      |                                                                     | 1 700 denotes for                        |  |  |  |
|------|---------------------------------------------------------------------|------------------------------------------|--|--|--|
| 91.  | In a P700 reaction centre of chlorophy                              | I, 700 denotes for                       |  |  |  |
|      | (1) Light wavelength                                                |                                          |  |  |  |
|      | (2) Number of reaction centres                                      |                                          |  |  |  |
|      | (3) Potential of the photosystem                                    |                                          |  |  |  |
|      | (4) Number of water molecule split                                  |                                          |  |  |  |
| 92.  | . During photosynthetic dark reaction, t                            | he inorganic C is fixed with             |  |  |  |
|      | (1) Ribulose 2,5-bisphosphate (2                                    | Ribose 2,5-bisphosphate                  |  |  |  |
|      | (3) Ribulose 1,5-bisphosphate                                       | Ribose 1,5-bisphosphate                  |  |  |  |
| 93.  | Identify the Cu containing photosynthetic pigment                   |                                          |  |  |  |
|      | (1) Chlorophyll                                                     | 2) Plastocyanin                          |  |  |  |
|      | (3) Thioredoxin                                                     | 4) Ferredoxin                            |  |  |  |
| 94.  | <ol> <li>In eukaryotes, the first transcript synt<br/>as</li> </ol> | hesized by RNA polymerase II is referred |  |  |  |
|      | (1) mRNA (2) sn-RNA                                                 | (3) Hn-RNA (4) t-RNA                     |  |  |  |
| 95   | 5. The conformation of 2'-deoxy-ribose i                            | n a DNA double strand is                 |  |  |  |
| ,,,  | (1) Chair type                                                      | (2) Boat type                            |  |  |  |
|      | (3) Furanose ring type                                              | (4) Puckered type                        |  |  |  |
| (61) | 19                                                                  | (P.T.O.)                                 |  |  |  |

| 96.  | Titration of a completely protonated solution of $\alpha$ -arginine against a base would produce pK values of |                     |         |                            |                                  |  |
|------|---------------------------------------------------------------------------------------------------------------|---------------------|---------|----------------------------|----------------------------------|--|
|      | (1) One                                                                                                       | (2) Two             | (3)     | Three                      | (4) Four                         |  |
| 97.  | Maximum numbe                                                                                                 | r of electrons in   | a sub   | shell with $l=3$           | and $n = 4$ is                   |  |
|      | (1) 10                                                                                                        | (2) 12              | (3)     | 14                         | (4) 16                           |  |
| 98.  | Mg <sup>2+</sup> is isoelectro                                                                                | onic with           |         |                            |                                  |  |
|      | (1) Ca <sup>2+</sup>                                                                                          | (2) Na <sup>+</sup> | (3)     | $Zn^{2+}$                  | (4) Cu <sup>2+</sup>             |  |
| 99.  | How many stereo                                                                                               | isomers of 3-bro    | mo-2-b  | outanol CH <sub>3</sub> CH | H(OH) CHBrCH <sub>3</sub> exist? |  |
|      | (1) 2                                                                                                         | (2) 4               | (3)     | 3                          | (4) 1                            |  |
| 100. | The isomers which are                                                                                         | can be interconv    | verted  | through rotatio            | n around a single bond           |  |
|      | (1) Conformers                                                                                                |                     | (2)     | Diastereomers              |                                  |  |
|      | (3) Enantiomers                                                                                               |                     | (4)     | Positional isor            | ners                             |  |
| 101. | Standard enthalpy<br>burnt in excess o                                                                        |                     | bustior | occurs when                | 1 mol of substance is            |  |
|      | (1) Nitrogen                                                                                                  |                     | (2)     | Oxygen                     |                                  |  |
|      | (3) Carbon dioxid                                                                                             | е                   | (4)     | Helium                     |                                  |  |
| (61) |                                                                                                               | 1                   | 20      |                            |                                  |  |
|      |                                                                                                               |                     |         |                            |                                  |  |

| 102.        | CH3CHO and C6H5CH2CHO can be distinguished chemically by |                      |       |                  |       |            |          |
|-------------|----------------------------------------------------------|----------------------|-------|------------------|-------|------------|----------|
|             | (1) Tollen's reage                                       | nt test              | (2)   | Fehling soluti   | on t  | est        |          |
|             | (3) Benedict test                                        |                      | (4)   | Iodoform test    |       |            |          |
| 103.        | The enzyme, tyros                                        | sinase, is activated |       | zinc             | (4)   | potassiun  | n        |
| 104.        | In hemoglobin, th                                        | e transition from    |       |                  |       |            |          |
|             | (1) Fe <sup>2+</sup> binding                             |                      | (2)   | Heme binding     |       |            |          |
|             | (3) Oxygen bindir                                        | ıg                   | (4)   | Subunit assoc    | iatio | on         |          |
| 105.        | Ethylene glycol re                                       | acts with dimethy    | l ter | ephthalate to fo | orm   |            |          |
|             | (1) Nylon-6·6                                            | (2) Teflon           | (3)   | Orlon            | (4)   | Dacron     |          |
| 106.        | The number of asy                                        | mmetric carbon at    | oms   | in the α-D-gluce | pyr   | anose mole | ecule is |
|             | (1) 2                                                    | (2) 3                | (3)   | 4                | (4)   | 5          |          |
| 107.        | Which is a disacc                                        | haride?              |       |                  |       |            |          |
|             | (1) Glucose                                              | (2) Maltose          | (3)   | Fructose         | (4)   | Cellulose  |          |
| <b>61</b> ) |                                                          | 21                   |       |                  |       |            | (P.T.O.) |
|             |                                                          |                      |       |                  |       |            |          |

Which of hydrogens a-d in the following molecule gives a triplet signal in a 108. normal 1HNMR spectrum?



- (1) Hydrogen a
- (2) Hydrogen b (3) Hydrogen c (4) Hydrogen d
- Which one of the following set of quantum numbers represents highest energy? 109.
  - (1) n=2, l=1 (2) n=3, l=2 (3) n=3, l=1 (4) n=2, l=0

- Strength of hydrogen bond is intermediate between 110.
  - (1) van der Waal and covalent
- (2) ionic and covalent

(3) ionic and metallic

- (4) metallic and covalent
- For a reaction to be spontaneous, the following is essential to be negative 111.
  - (1)  $\Delta H T\Delta S$
- (2)  $\Delta H + T\Delta S$
- (3) ΔH
- (4) AS

- When ice melts into water, entropy 112.
  - (1) becomes zero

(2) decreases

(3) increases

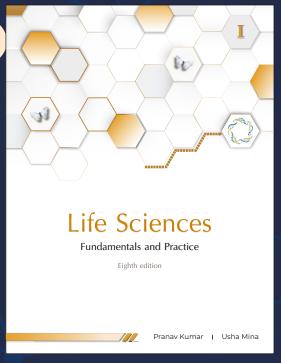
- (4) remains same
- The value of free energy change at equilibrium is 113.
  - (1) positive
- (2) negative
- (3) zero
- (4) not definite

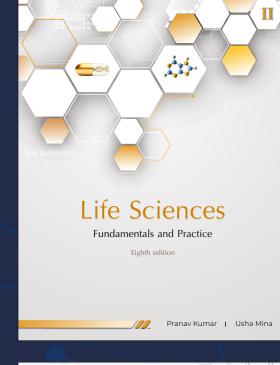
(61)

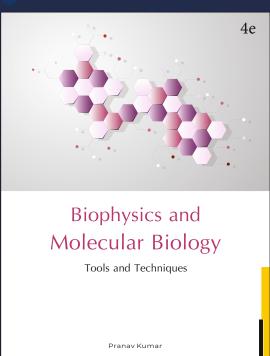
| 114. | Which one of the following is not a hard base? |                      |                     |           |           |          |  |
|------|------------------------------------------------|----------------------|---------------------|-----------|-----------|----------|--|
|      | (1) NH <sub>3</sub>                            | (2) H <sub>2</sub> O | (3) C1 <sup>-</sup> | (4)       | CN-       |          |  |
| 115. | Hg <sup>2-</sup> is classified                 | as                   |                     |           |           |          |  |
|      | (1) soft acid                                  | (2) hard acid        | (3) soft base       | (4)       | hard base |          |  |
| 116. | Winkler method is                              | s used to determi    | ine                 |           |           |          |  |
|      | (1) Dissolved Oxy                              | gen (DO)             |                     |           |           |          |  |
|      | (2) Biochemical C                              | oxygen Demand (I     | BOD)                |           |           |          |  |
|      | (3) Organic Carbo                              | on (OC)              |                     |           |           |          |  |
|      | (4) Elemental Car                              | bon (EC)             |                     |           |           |          |  |
| 117. | The smog is gene                               | rally caused by tl   | he presence of      |           |           |          |  |
|      | (1) $O_2$ and $O_3$                            |                      | (2) $NO_X$ and      | sox       |           |          |  |
|      | (3) $O_2$ and $N_2$                            |                      | (4) $O_3$ and N     | 2         |           |          |  |
|      | m                                              | d E stand for        |                     |           |           |          |  |
| 118. | The prefixes Z an                              | d E stand for        |                     |           |           |          |  |
|      | (1) Zeigler-Erhard                             | 02                   | (2) Zwitter-Er      | ythro     |           |          |  |
|      | (3) Zirco-Estrogen                             | i                    | (4) Zusamme         | n-Entegge | en        |          |  |
| (61) |                                                | 2                    | 3                   |           |           | (P.T.O.) |  |

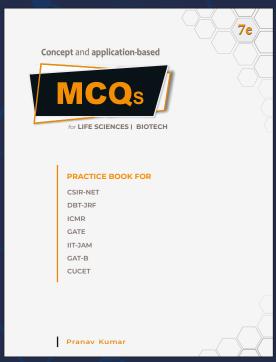
- 119. Bakelite is a cross-linked polymer of
  - (1) Phenol

- (2) Formaldehyde
- (3) Both phenol and formaldehyde
- (4) Wool
- 120. α-D-glucose and β-D-glucose are
  - (1) anomeric sugar


(2) epimeric sugar


(3) position isomers


(4) functional isomers


\*\*\*











# MSc Entrance Exam Combo Set

**Biotechnology & Life Sciences** 



https://www.amazon.in/Pathfinder-Academy-Biotechnology-Sciences-Entrance/dp/8190642766



https://www.flipkart.com/pathfinder-academy-m-sc-biotechnology-life-sciences-entrance-exam-combo-set/p/itmegchtfm9nkytk?

## Pathfinder Academy

pathfinderacademy.in | 9818063394

#### रफ़ काय क लिए जगह

## अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा ओ॰एम॰आर॰ उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली/काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न-पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई पृष्ठ या प्रः छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूस पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में प्रवेश-पत्र के अविरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. ओ॰एम॰आर॰ उत्तर-पत्र अलग से दिया गया है। **इसे न तो मोड़ें और न ही विकृत करें। दूसरा** ओ॰एम॰आर॰ उत्तर पत्र नहीं दिया जायेगा। केवल ओ॰एम॰आर॰ उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. नर्भा प्रविष्टियां प्रथम आवरण-पृष्ठ पर नीली/काली बाल पेन से निर्धारित स्थान पर लिखें।
- 5. ओ०एम०आर० उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्त् को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक एवं केन्द्र कोड नम्बर तथा सेट का नम्ब उचित स्थानों पर लिखें।
- 6. ओ॰एम॰आर॰ उत्तर-पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न पुस्तिका पर अनुक्रमांक सं॰ और ओ॰एम॰आर॰ उत्तर-पत्र सं॰ की प्रविष्टियों में उपिरलेखन की अनुमित नहीं है
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित मण्ड का प्रयोग माना जायेगा।
- 8. प्रध्न-पुस्तिका में प्रत्येक प्रथन के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपव ओल्एम०आर० उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को ओल्एम०आर० उत्तर-पत्र के प्रथम पृ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाड़ा करने पर अबर एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाह हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा की समाप्ति के बाद अभ्यर्थी अपना ओ०एम०आर० उत्तर-पत्र परीक्षा कक्ष/हाल में कक्ष निरीक्षक को सींप हैं। अभ्यः अपने साथ प्रश्न-पुस्तिका तथा ओ०एम०आर० उत्तर-पत्र की प्रति ले जा सकते हैं।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भार होगा/होगी।