Set No. 1	18P/210/23	199.
Total No. of Printed Pages: 23	0	uestion Booklet No
(To be filled u	p by the candidate by blue/t	olack ball-point pen)
Roll No.		
Roll No. (Write the digits in word	0 (0 1	4
Serial No. of OMR Answer Sheet	acoio"	<i>J</i>
Centre Code No.		
Day and Date		(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet being it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card.
- 3. A separate OMR Answer Sheet is given It should not be folded or mutilated A second OMR Answer Sheet shall not be provided. Only the OMF Answer Sheet will be evaluated.
- 4. Write all entries by blue/black pen in the space provided above.
- 5. On the frost page of the OMR Angwer Sheet, write by pen your Roll Number in the space provided at the top, and by darkfning the circles at the ottom. Also, write the Question Booklet Number, Centre Code Number and the Set Number wherever applicable in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR Answer sheet and Roll No. and OMR Answer sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the OMR Answer Sheet.
- For each question, darken only one circle on the OMR Answer Sheet. If you darken more than one
 circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11 For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- On completion of the Test, the candidate must handover the OMR Answer Sheet to the Invigilator on the examination room/hall. However, candidates are allowed to take away Test Booklet and copy of OMR Answer Sheet with them
- candidates are not permitted to leave the Examination Hall until the end of the Test https://patiminderacademy.in/
- is a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as

ROUGH WORK एक कार्य

No. of Questions: 120

Time: 2 Hours] [Full Marks: 360

Note: (1) Attempt as many questions as you can. Each question carries 3 (Three) marks. One mark will be deducted for each incorrect answer.

Zero mark will be awarded for each unattempted question.

(2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

- 1. Milk sugar is called
 - (1) Glucose (2) Lactose (3) Sucrose (4) Galactose
- 2. The z-DNA helix
 - (1) Is the primary form in living organisms
 - (2) Is favoured by an alternating G-C sequence
 - (3) Is inhibited by the methylation of the bases
 - (4) Is a permanent conformation of DNA
- 3. Which of the following is a characteristic of mitochondria?
 - The inner membrane forms cristae and contains small spheres attached by stalks on the inner surface
 - (2) Mitochondria have no role in apoptosis
 - (3) Mitochondrial DNA is similar to nuclear DNA in size and shape
 - (4) Only the outer membrane has transmembrane systems for translocation of metabolites

.ţ.	Sorbitol is a	
	(1) Reducing sugar	(2) Sugar alcohel
	(3) Sugar ester	(4) Glycoside
5.	Chromosomes having equal or almost	equal arms are known as
	(1) Metacentric	(2) Aerocentric
	(3) Concentric	(4) Telocentric
6.	The pentose sugar present in DNA is	
2.5	(1) Ribose	(2) Ribulose
	(3) Sucrose	(4) Deoxyribose
7.	Which of the following cell organell cazymes?	e is considered to be rich in hydrolytic
	(1) Endoplasmic reticulum	(2) Lysosomes
	(3) Golgi bodies	(4) Mitochondria
8.	Ribosomes are the centers for	
	(1) Respiration	(2) Photosynthesis
	(3) Protein synthesis	(4) Lipid synthesis
9,	HDL is synthesized and secreted from	
	(1) Liver	(2) Muscle
	(3) Kidney	(4) Pancreas

10.	Xanthine oxidase is inhibited by						
	(1) Aspirin	(2) Probenecid					
	(3) Allopurinol	(4) Colchicine					
11.	Osmosis is opposite to						
	(1) Diffusion	(2) Effusion					
	(3) Affusion	(4) Coagulation					
12.	A lipid bilayer is permeable to						
	(1) Urea	(2) Potassium					
	(3) Glucose	(4) Fructose					
13.	rRNA in mammalian cells is produced	mainly in the					
	(1) Nucleus	(2) Nucleolus					
	(3) Ribosome	(4) Endoplasmic reticulum					
14.	The constituent unit of inulin is						
	(1) Glucose	(2) Fructose					
	(3) Mannose	(4) Galactose					
15.	Osazones are not formed with						
	(1) Glucose	(2) Fructose					
	(3) Sucrose	(4) Lactose					

16.	The	active site of an enzyme								
	(1) Binds competitive inhibitors									
	(2)	(2) Is directly involved in binding of allosteric inhibitors								
	(3)	Is formed after addition of a subs	strate							
	(4) Resides in a few adjacent amino acid residues in the primary sequence of the protein									
17.	Lac	tate dehydrogenase is								
	(1)	Ligase	(2)	Lyase						
	(3)	Isomerase	(4)	Oxidoreductase						
18.	Carl	bonic anhydrase is an example of	0							
	(1)	Lipoprotein	(2)	Phosphoprotein						
	(3)	Chromoprotein	(4)	Metalloprotein						
19.	The	milk protein casein is								
	(1)	Nucleoprotein	(2)	Phosphoprotein						
	(3)	Glycoprotein	(4)	Chromoprotein						
20.	Reni	in converts casein to paracasein in	pres	ence of						
	(1)	Ca ⁺⁺	(2)	Mg^{\leftrightarrow}						
	(3)	Na*	(4)	K ⁺						

21.	Peps	sinogen is con	verted	to pepsin by			
	(1)	HCI			(2)	Bile salts	
	(3)	Ca ⁺⁺			(4)	Enterokinase	
22.	The	immunoglobu	lin ha	ving the longes	t hal	f-life is	
	(1)	IgA	(2)	IgM	(3)	IgG	(4) IgE
23.	Con	plement fixat	ion reį	gion can be act	ivate	d by binding of	fantigen to
	(1)	lgA	(2)	IgD	(3)	lgM	(4) IgE
24.	Hist	idine is conve	rted in	to histamine b	у		
	(1)	Carboxylation	1		(2)	Decarboxylati	on
	(3)	Methylation			(4)	Hydroxylation	ļ
25.	NH,	is detoxified	in bra	in as			
	(1)	Urea			(2)	Uric acid	
	(3)	Creatinine			(4)	Glutamine	
26.	Whi	ch of the follo	wing	protein is rich	in cy	stine?	
	(1)	Keratin			(2)	Collagen	
	(3)	Elastin			(4)	Fibrin	

ds
ds
ce
C

33.	Ketone bodies are synthesized in						
	(1)	Liver	(2)	Kidney			
	(3)	Heart	(4)	Intestine			
34.	Whi	ch of the following is not an essent	ial fa	atty acid?			
	(1)	Linoleic acid	(2)	Linolenic acid			
	(3)	Arachidonic acid	(4)	Oleic acid			
35.	The	key regulatory enzyme in choleste	rol b	iosynthesis is			
	(1)	HMG CoA synthetase	(2)	HMG CoA reductase			
	(3)	Squalene synthetase	(4)	Mevalonate kinase			
36.	The	most active metabolite of vitamin	D is				
	(1)	25-hydroxycholecalciferol					
	(2)	1,25-dihydroxycholecalciferol					
	(3)	24,25-dihydroxycholecalciferol					
	(4)	1,25,26-trihydroxycholecalcifer	ol				
37.	Vita	amin K is found in					
	(1)	Green leafy vegetables	(2)) Meat			
	(3) Fish (4) Milk						

38.	Tocopherols prevent the oxidat	tion of
	(1) Vitamin A	(2) Vitamin C
	(3) Vitamin D	(4) Vitamin K
39.	Retinoic acid is involved in the	synthesis of
	(1) Rhodopsin	(2) Iodopsin
	(3) Porphyrinopsin	(4) Glycoproteins
40.	Folate deficiency causes	
	(1) Microcytic anemia	(2) Hemolytic anemia
	(3) Iron deficiency anemia	(4) Megaloblastic anemia
41.	Which of the following ion activ	vates salivary amylase activity?
	(1) Sodium	(2) Potassium
	(3) Chloride	(4) Bicarbonate
42.	Mitochondrial membrane is fre	ely permeable to
	(1) Pyruvate	(2) Malate
	(3) Oxaloacetate	(4) Fumarate
43.	The source of all the carbon ato	ms of cholesterol is
	(J) Acetyl CoA	(2) Bicarbonate

44.	The enzyme hexokinase is a	es a
	(1) Hydrolase	(2) Oxidoreductase
	(3) Transferase	(4) Ligase
45.	Lactate dehydrogenase is a	
	(1) Monomer	(2) Dimer
	(3) Tetramer	(4) Hexamer
46.	An allosteric inhibitor of pyrus	vate dehydrogenase is
	(1) Acetyl CoA	(2) AIP
	(3) NADH	(4) Pyruvate
47.	Which of the following carbo strict vegetarians?	hydrates would be most abundant in the diet of
	(1) Amylose	(2) Lactose
	(3) Cellulose	(4) Maltose
48	. Which of the following antib	ody can cross the placenta?
	(1) IgA	(2) IgE
	(3) IgG	(4) IgM
49	. The immunoglobulins are cla	assified on the basis of
	(1) Light chains	(2) Heavy chains
	(3) Carbohydrate content	(4) Electrophoretic mobility
		(9) (Turn Over)

50.	The trace element catalyzing hemoglobin synthesis is							
	(1)	Manganese	(2)	Magnesium				
	(3)	Copper	(4)	Selenium				
51.	An	onspecific intracellular antioxidant	t is					
	(1)	Chromium	(2)	Magnesium				
	(3)	Nickel	(4)	Selenium				
52.	Dur	ing an overnight fast, the major so	urce	of blood glucose is				
	(1)	Gluconeogenesis						
	(2)	(2) Hepatic glycogenolysis						
	(3)	(3) Muscle glycogenolysis						
	(4)	(4) Dietary glucose from the intestine						
53.	Pan	tothenic acid is a constituent of the	coen	zyme involved in				
	(1)	Acetylation	(2)	Decarboxylation				
	(3)	Oxidation	(4)	Reduction				
54.	An a	amino acid required for porphyrin s	ynthe	esis is				
	(1)	Proline	(2)	Glycine				
	(3)	Serine	(4)	Histidine				

55.	Iron is transported in blood in the form of								
	(1)	Ferritin			(2)	Haemo	osiderin		
	(3)	Transferrin			(4)	Haemo	oglobin		
56.	Spec	cific Dynamic	Action	n (SDA) o	f protein	is abou	t		
	(1)	5%	(2)	13%	(3)	20%	(4)	30%	
57.	The	principal catio	on of e	extracellul	ar fluid is	3			
	(1)	Na ⁺	(2)	K ⁺	(3)	H+	(4)	Ca ⁺⁺	
58.	A h	ormone used f	or the	detection	of pregna	ancy is			
	(1)	Estrogen			(2)	Proge	sterone		
	(3)	Oxytocin			(4)	Chori	onic gonado	tropin	ì
59.	Sor	natotropin is s	ecrete	d by					
	(1)	Hypothalam	us		(2)) Anter	ior pituitary		
	(3)	Posterior pi	tuitary		(4)) Thyro	oid gland		
60.	Ins	ulin stimulates	5			10			
	(1)	Hepatic glyc	ogen	olysis	(2) Hepa	tic glycoger	nesis	
	(3)	Lipolysis			(4) Gluc	oneogenesis	3	
					(11)				(Turn Over)

61.	A hormone which o	cannot cross the blood b	rain barrier is
	(1) Epinephrine	(2)	Aldosterone
	(3) ACTH	(4)	TSH
62.	Which of the followacid cycle and the	(5) (5) (5) (5)	as a primary link between the citric
	(1) Malate	(2)	Succinate
	(3) Fumarate	(4)	Citrate
63.	Which of the follow	ving is a coenzyme?	
	(1) Glucose-6-pho	osphate (2)	Calcium ion
	(3) Lipoic acid	(4)	UDP-glucose
64.	The major source of	f extracellular cholester	ol for human tissues is
	(1) Low density li	ipoproteins	
	(2) Very low dens	ity lipoproteins	
	(3) High density l	ipoproteins	
	(4) Albumin		
65.	Purine nucleotide b	iosynthesis can be inhib	ited by
	(1) Adenosine mo	nophosphate	
	(2) Uridine monop	phosphate	
	(3) Adenosine trip	phosphate	
	(4) Guanosine trip	phosphate	

The direction of a chemical reaction is best predicted by		
(1) Enthalpy change		
(2) Entrophy change		
(3) Free energy change		
(4) Energy of activation change		
The cell theory is not applicable to		
(1) Bacteria	(2) Algae	
(3) Virus	(4) Fungi	
Extranuclear DNA is found in		
(1) Nucleus	(2) Ribosome	
(3) Chloroplast	(4) Endoplasmic reticulum	
Prokaryotic cells does not possess		
(1) Cell wall	(2) Cytoplasm	
(3) Nuclear membrane	(4) Plasma membrane	
Plasma membrane is composed of		
(1) Protein	(2) Lipids	
(3) Cellulose	(4) Protein and lipids	
	 Enthalpy change Entrophy change Free energy change Energy of activation change Energy of activation change Cell theory is not applicable to Bacteria Virus Virus Extranuclear DNA is found in Nucleus Chloroplast Prokaryotic cells does not possess Cell wall Nuclear membrane Plasma membrane is composed of Protein 	

1.	Ribosomes help in	¥
	(1) Protein synthesis	(2) Photosynthesis
	(3) Lipid synthesis	(4) Respiration
72.	All of the following classes of lipids a except	re components of biological membranes
	(1) Cholesterol	(2) Phospholipids
	(3) Glycolipids	(4) Triacylglycerols
73.	The main function of centrosome is	
	(1) Secretion	
	(2) Osmoregulation	
	(3) Protein synthesis	
	(4) Formation of spindle fibre	
74.	Fungus without mycelium is	
	(1) Puccinia	(2) Rhizopus
	(3) Saccharomyces	(4) Mucor
75.	Double fertilization is found in	
	(1) Bryophytes	(2) Angiosperms
	(3) Gymnosperms	(4) Pteridophytes

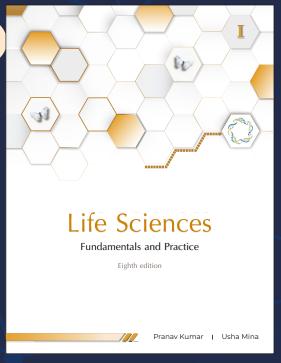
76.	Xanthophyll is a pigment containing	g
	(1) Yellow color	(2) Green color
	(3) Red color	(4) Blue color
77.	Peroxisomes and glyoxisomes are	
	(1) Energy transducers	(2) Membrane-less organelles
	(3) Microbodies	(4) Basal bodies
78.	Dictyosome is also known as	
	(1) Golgi apparatus	(2) Ribosome
	(3) Lysosome	(4) Peroxisome
79.	The vitamin which is essential for b	plood clotting is
	(1) Vitamin A	(2) Vitamin B
	(3) Vitamin C	(4) Vitamin K
80.	Kupffer cells are present in	
	(1) Liver	(2) Small intestine
	(3) Pancreas	(4) Thyroid gland
81.	Retroviruses have	
	(1) Only RNA as genetic material	
	(2) Only DNA as genetic material	
	(3) Both DNA and RNA as genetic	material
	(4) Genes on nucleoprotein comp	lexes as genetic material

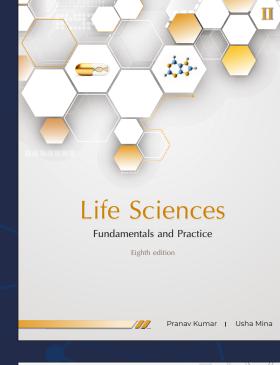
82.	A prominent prebiotic substance	is
	(1) Starch	(2) Cellulose
	(3) Pectin	(4) Fructooligosaccharide
83.	Which one of the following is a	cobalt containing vitamin?
	(1) Vitamin B ₂	(2) Vitamin B ₃
	(3) Vitamin B ₆	(4) Vitamin B ₁₂
84.	E.coli bacteria are beneficial to	numan because they
	(1) Convert pepsinogen to pep	sin
	(2) Absorb water from the larg	ge intestine
	(3) Produce vitamins and amir	no acids
	(4) Synthesize urea from the b	reakdown of amino acids
85.	The specificity of an antibody as	gainst ao antigen is determined by
	(1) The amino acid loops in its	s variable domain
	(2) The amino acid loops in it	s constant domain
	(3) The concentration of antib	odies and antigens
	(4) The Y-shaped structure of	immunoglobulins
86.	α-amanitin inhibits	
	(1) RNA polymerase I	(2) RNA polymerase II
	(3) DNA polymerase I	(4) DNA polymerase II

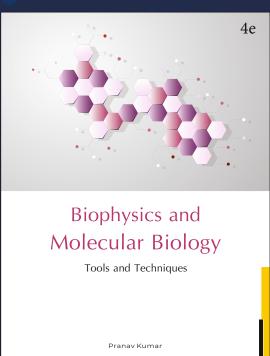
87.	Hydroxylation of proline and lysine in	collagen molecule requires
	(1) Vitamin D	(2) Vitamin K
120	(3) Vitamin C	(4) Vitamin E
88.	Sickle cell anemia occurs due to	
	(1) Silent mutation	(2) Missense mutation
	(3) Nonsense mutation	(4) Frameshift mutation
89.	Enzyme required to release the tension	imposed by uncoiling of DNA strand is
	(1) DNA helicase	(2) DNA ligase
	(3) DNA gyrase	(4) Endonuclease
90.	If the DNA sequence is ATG, the se would be	equence of bases in anticodon t-RNA
	(1) CAU (2) AUG	(3) TAC (4) UAC
91.	The non-reducing sugar is	
	(1) Glucose	(2) Sucrose
	(3) Lactose	(4) Maltose
92.	All of the following polysaccharides of	ontain glucose, except
	(1) Glycogen	(2) Starch
	(3) Inulin	(4) Cellulose

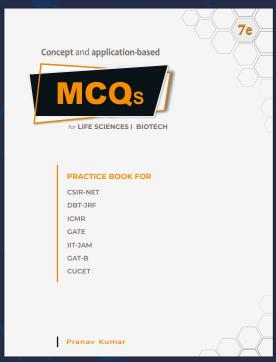
93.	All of the following are amphipathic molecule except		
	(1) Cholesterol	(2) Glycolipids	
	(3) Phospholipids	(4) Triacylglycerols	
94.	Which one of the following molecu	le act as local hormone?	
	(1) Essential fatty acids	(2) Prostaglandins	
	(3) Cholesterol	(4) Phospholipids	
95.	Which region of mRNA contains Sh	ine-Dalgarno sequence?	
	(1) 5' untranslated region	(2) 3' untranslated region	
	(3) Protein coding region	(4) Promotor region	
96.	$\alpha\text{-}D$ glucose and $\beta\text{-}D$ glucose are		
	(1) Epimers	(2) Anomers	
	(3) Optical isomers	(4) Keto-aldose isomers	
97.	Photosynthesis is a		
	(1) Reductive, endergonic and catabolic process		
	(2) Reductive exergonic and anabolic process		
	(3) Reductive, endergonic and anabolic process		
	(4) Reductive, exergonic and catabolic process		

98.	Whi	ch one of the following protein	s are ass	ociated with DNA structu	re?
	(1)	Albumins	(2)	Globulins	
	(3)	Collagen	(4)	Histones	
99.	The	natural reservoir of Ebola viru	s is		
	(1)	Fruit bat	(2)	Dog	
	(3)	Pig	(4)	Sheep	
100	. The	Southern blot technique is use	d for		
	(1)	The detection of RNA fragmantibodies	ents on	membranes by specific ra	dioactive
	(2)	The detection of DNA fragn	nents on	membranes by a radioac	tive DNA
	(3)	The detection of proteins on	membra	nes using a radioactive Di	NA probe
	(4)	The detection of DNA fragrantibodies	nents on	membranes by specific ra	adioactive
10	ı. Diş	gestive enzymes are		e .	
	(1)	Transferases	(2) Hydrolases	
	(3)	Lyases	(4) Ligases	
102. Cholecalciferol is synthesized in the skin by photolysis from					
	(1)	Ergosterol	(2	2) Lanosterol	
	(3)	Cholesterol	(4	1) 7-dehydrocholesterol	
			(19)	13	(Turn Over)


103. F	Biot	in takes part in				
((1)	Transamination re	actions	(2)	Decarboxylat	ion reactions
((3)	Carboxylation rea	ctions	(4)	Deamination	reactions
104.	The	main function of s	uperoxide dis	mutase	e is to	
((1)	Catalyze the conv	ersion of O ₂ t	о ЦО	and O ₂	
((2)	Create superoxid	es by oxidizin	g hem		
((3)	Convert H2O2 to v	vater and O2			
((4)	Remove H ₂ O ₂ by	oxidizing glut	athion	e and producing	g water
105. 1	In th	e biosynthesis of c	-DNA, the jo	ining e	nzyme ligase r	equires
((1)	AIP (2)	GTP	(3)	CTP	(4) UTP
106. Heparin is a						
((1)	Lipopolysaccharic	ie	(2)	Glycated lipo	polysaccharide
((3)	Sulphated polysac	charide	(4)	Sulphated lipe	opolysaccharide
107. I	Fish	can survive inside	a frozen lake	becau	se	
((1)	Fish hibernate in	ice			
((2)	Fish are warm blo	oded animals	i		
((3)	lce is a good con	ductor of heat	1		
((4)	Water near the be	ottom does no	t freez	e	
	(20) (Continued)					


108.	08. Asparaginase is used as an			
	(1)	Anti-tumor agent	(2)	Anti-tuberculosis agent
	(3)	Anti-malarial agent	(4)	Anti-diabetic agent
109.	Whi	ch of the following enzyme does no	ot re	quire a primer?
	(1)	RNA dependent DNA polymerase		
	(2)	DNA dependent DNA polymerase		
	(3)	DNA dependent RNA polymerase		
	(4)	Taq DNA polymerase		
110.	Gly	cosylation of proteins occurs in the	e	
	(1)	Mitochondria	(2)	Endoplasmic reticulum
	(3)	Lysosome	(4)	Peroxisome
111	. Wh	ich of the following amino acids is	code	ed by maximum number of codons?
	(1)	Alanine	(2)	Leucine
	(3)	Tryptophan	(4)	Valine
112	. Tel	omeric DNA does not contain		e e e e e e e e e e e e e e e e e e e
	(1)	AT rich sequences	(2)	G-rich sequences
	(3)	T and D loops	(4)) Quadruplex
		- X		


113.	3. The double-helical Watson-Crick structure of DNA was first obtained from			
	(1)	X-ray diffraction from single crystals		
	(2)	Diffraction from single crystals and molecular modeling		
	(3)	Fiber diffraction only		
	(4)	Fiber diffraction and molecular n	nodeling	
114.	Gen	es related through descent from a	common ancestral gene are called	
	(1)	Homologous	(2) Heterologous	
	(3)	Orthologous	(4) Paralogous	
115.		npetitive inhibition of an enzyme t e by simply	by a competitive inhibitor can be over	
	(1)	Increasing the concentration of su	ibstrate	
	(2)	Decreasing the concentration of s	substrate	
	(3)	Increasing the temperature of rea	ction	
	(4)	Decreasing the temperature of re-	action	
116.	Whi	ch one of the following receptors p	perceives blue light in plants?	
	(1)	Phytochrome	(2) Cryptochrome	
	(3)	Phototropin	(4) Photopsin	


117.	War	burg effect is characterized by			
	(1)	Increased glycolysis	(2)	Decreased glycolysis	
	(3)	Absence of glycolysis	(4)	Malfunctional glycolysis	
118.	Deo	xy UMP is converted to TMP by			
	(1)	Methylation	(2)	Carboxylation	
	(3)	Decarboxylation	(4)	Deamination	
119.	Ops	onization process is involved with			
	(1)	T cells	(2)	B cells	
	(3)	Neutrophils	(4)	Macrophages	
120.	120. In a gel filtration chromatography				
	(1)	The small protein will be eluted f	īrst		
	(2) The large protein will be eluted first				
	(3)	Both large and small will elute at	the	same time	
	(4)	The small protein with high charg	ge wi	ill be eluted first	

MSc Entrance Exam Combo Set

Biotechnology & Life Sciences

https://www.amazon.in/Pathfinder-Academy-Biotechnology-Sciences-Entrance/dp/8190642766

https://www.flipkart.com/pathfinder-academy-m-sc-biotechnology-life-sciences-entrance-exam-combo-set/p/itmegchtfm9nkytk?

Pathfinder Academy

pathfinderacademy.in | 9818063394

ROUGH WORK एक कार्य

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केतल नीली/काली बाल-प्वाइंट पेन से ही लिखें)

- ग्रिस्त पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपद में सभी पृष्ट मौजुद है और लोड़े प्रश्न खूटा नहीं है । पुस्तिका दोषगुक्त पाये जाने पर इसकी सूचना उत्काल कर्स-निरीक्षक कर देखा सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें ।
- 2. परीक्षा भवन में *प्रचेशा-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें ।
- ओःएमःआरः उत्तर-पत्र अलग से दिया गया है। इसे न तो मोई और न ही त्रिकृत करे। दूसरा ओःएमः भारः उत्तर-पत्र नहीं दिया जायेगा। क्रेबल ओःएमःआरः उत्तर-पत्र का ही पूल्यांकन किया जायेगा।
- तभी प्रविष्टियाँ प्रथम आवरण-पृष्ठ पर नीली/काली पेन से निर्धारित स्थान पर ग्लेखें ।
- ओ.एम.आर. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाड़ा कर हैं । जहाँ--जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक, केन्द्र कोड नम्बर तथा सेट का नम्बर उचित स्थानों पर लिखें ।
- 6. औ.एम.आर. उत्तर-पत्र पर अनुक्रमांक संख्या, प्रश्न-पुश्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुश्तिका पर अनुक्रमांक संख्या और औ.एम.आर. उत्तर-पत्र संख्या की प्रतिष्टियों में उपित्लेखन की अनुमित नहीं है।
- े. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक ारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रश्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको ओ.एम.आर. उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ट पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाड़ा करने पर अथवा एक वृत्त का अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान हैं कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का टक्कर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खासी छोड़ हैं। ऐसे प्रश्नों पर श्रून्य अंक दिये आवेंगे।
- ग्रह कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अन्तर वाला गृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा की समाप्ति के बाद अभ्यर्थी अपना ओ.एप.आ६. उत्तर-पत्र परीक्षा कक्ष/हाल में कक्ष निरीक्षक को सींप दे अभ्यर्थी अपने साथ प्रश्न पुस्तिका तथा ओ.एप.आ६. उत्तर-पत्र की प्रति ले जा सकते हैं।
- अभ्यर्थी को परीक्षा समाम होने से पहले परीक्षा भवन में बाहर जाने की अनुमति नहीं होगी !
- 14. यदि कोई अभ्यर्थी परिक्षा में उपानित महालें कर गानेल कर के 🗈 -- https://pathfinderacademy.in/