Whe Biochemust (487)
https://pathfinderacade.ny.in/

15P/210/30

(42)		
Question	Booklet	No

		(To b	e filled up	by the	candide	ate by l	olue/bl	ack ball-point pen)
Roll No.								
Roll No. (Write the	digits in	words)	· · · · · · · · · · · · · · · · · · ·					
Serial No.	of OMR	Answe	r Sheet			.,,,		
Day and I	Date	. 	**********					(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that
 it contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं]

[No. of Printed Pages: 28+2

15P/210/30

No. of Questions/प्रश्नों की संख्या : 150

Time/समद : 2 Hours/घण्टे

Full Marks/पूर्णांक : 450

- Note: (1) Attempt as many questions as you can. Each question carries 3 marks.

 One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.
 - अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।
 - (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।

- The process by which the particles move a region of higher concentration to a lower concentration to spread uniformity is called as
 - (1) osmosis

(2) diffusion

(3) transportation

(4) conduction

(P.T.O.)

2.	The force with which the surface	molecules of a liquid are held together is called
	(1) tensile strength	(2) power
	(3) cohesive	(4) surface tension
3.	Chief cells secrete	¥
	(1) NaOH (2) HCl	(3) NaHCO ₃ (4) enzymes
4.	If a reaction is at equilibrium,	he free energy, AG is equal to
*	(1) 1 (2) 2	(3) 0 (4) 10
5.	Which are the non-covalent bone points of water?	is responsible for the high melting and boiling
	(1) H-bonds	(2) van der Waals' force
	(3) hydrophobic force	(4) electrostatic interactions
6.	Which of the following is a suici	de enzyme?
	(1) Glucokinase	(2) LDH
	(3) Cyclooxygenase	(4) GOT
7.	Enzyme trypsin converts	
	(1) amino acids into proteins	(2) glucose into glycogen
	(3) starch into sugar	(4) proteins into amino acids
(333)	a e	2

8.	Why is red wine p	articularly benefic		3+3			
	(1) It contains vita	amins	(2)	It contains pro	per	carbohydrai	te
	(3) It contains and	tioxidants	(4)	It contains pro	tein	s	
9.	Which of the follow a protein?	ving is not useful it	n ide	ntifying the ami	no-t	erminal resi	due of
	(1) Cyanogen bron	nide	(2)	Dansyl chlorid	le		
	(3) Fluorodinitrob	enzene	(4)	Phenyl isothio	cyar	nate	
10.	Which of the follow a water-soluble pr	ving amino acid re- rotein?	sidu	es is likely to be	fou	nd on the in	side of
	(1) His	(2) Asp	(3)	Ile	(4)	Arg	
11.	The water soluble	part of starch is		* .			
	(1) amylose	(2) amylopectin	100 to 100	pectin	•	glycogen	н
12.	The resistance exp	perience by one lay	rer o	f a liquid in mo	ving	over anothe	r layer
	(1) friction	(2) viscosity	(3)	force	_. (4)	torque	
13.	Which of the follo	wing is true?					
	(1) Apoenzyme -	coenzyme = holoen	zym	c			8.
	(2) Apoenzyme +	coenzyme = holoer	zym				
	(3) Apoenzyme =	holoenzyme		*		*	
	(4) Coenzyme = h	oloenzyme				G.	3.67
333)		;	3		*		(P.T.O.)

İ

14.	Which of the for	of glutathione in its role		
	(1) Hydroxyl gr	oup	(2) Sulfhydryl g	roup
	(3) Keto group		(4) Carboxyl gr	oup
15.	Which of the fo	llowing is not a d	lietary antioxidant?	*
	(1) Vitamin C	_	(2) Vitamin E	S 4 5
	(3) Vitamin K		(4) Beta-caroter	ne
16.	If the average m	olecular weight of de up of 10 amin	one amino acid is 1 no acids is expected	10, the molecular weight to be
	(1) 1100	(2) 744	(3) 938	(4) 876
17.	How many molec	cules of vitamin A	are formed from one :	molecule ofβ-carotene?
	(1) 1	(2) 2	(3) 3	(4) 4
18.	In photosynthes oxidase utilizes	is and cellular res	spiration processes,	the catalyst cytochrome
9	(1) Cu	(2) Fe	(3) Cu and Fe	(4) Ni
19.	Who gave the na	ame 'nucleic acid'	2	
¥	(1) Altmann	(2) Franklin	(3) Watson	(4) Crick
(333)	5 9		4	

20.	The offsprings ob	tain how much ge	nes I	rom launer?			
#%	(1) 25%	(2) 75%	(3)	50%	(4)	100%	
21.	A child with IQ 1	40 belongs to whi	ich ca	ategory?			
	(1) Genius	Ŧ	(2)	Superior			
82	(3) Most superior		(4)	Average			9
22.	In which era life	was evolved?				el	• >
	(1) Precambrian	era	(2)	Mesozoic era		••	
	(3) Cenozoic era		(4)	Paleozoic era			
	E E GE 10			* *			
23.	A specific charact	eristic of class in	sects	is			©
	{1} two pairs of I	egs	(2)	three pairs of	legs		
ā _v	(3) four pairs of	legs	(4)	five pairs of k	egs	220 W	
24.	Sleeping sickness	occurs due to					
	(1) euglena	5) 6.	(2)	plasmodium			
*	(3) crustacean		(4)	protozoa			
25.	Silverfish is			, .			
	(1) insect	(2) fish	(3)	crustacean	(4)	bird	
			71	*		#	m m o :
1000			5				(P.T.O.)

i

26.	Hydra moves with	fast speed by	
	(1) looping		(2) walking on foot
	(3) creeping		(4) somar salting
27.	On which segment organ?	it of the body,	the earthworm possesses male reprodu
	(1) Segment 18		(2) Segment 19
	(3) Segment 20	,	(4) Segment 21
28.	Tendons connect	ş	
	(1) bone to bone		(2) bone to muscle
	(3) muscle to mu	scle	(4) skin to muscle
29.	Which of the follo	wing is not an	enzyme?
	(1) Maltase	(2) Amylose	(3) Trypsin (4) Lipase
30.	Most of the memb	ers of vitamin	B complex are primarily used as
	(1) hormones		(2) enzymes
	(3) coenzymes		(4) digestive elements
31.	Chloride shift in b	lood is essentia	al for the transport of which gas?
	(1) O ₂	(2) N ₂	(3) CO ₂ (4) CO
(333)	,	9	6

32.	Tricuspid valve es	xists	between		*		#	
	(1) right auricle	and v	rentricle	(2)	both auricles		st	
*	(3) both ventricle	:8	×.	(4)	left auricle an	d ve	ntricle	ř
33.	Haptens are							
*	(1) small molecu	les	Si .	(2)	large molecule	8		
	(3) medium size	mole	cules	(4)	inclusion bodi	¢8		
34.	How much prote	in is	there in HDL?		S.	ď	¥	
	(1) 10%	(2)	20%	(3)	50%	(4)	35%	
35.	One letter used	to de	note tryptopha	n is				
*	(1) W	(2)	R	(3)	L	(4)	K ·	
36.	Deamination of o	ytosi	ne leads to					
100	(1) thimine	(2)	uracil	(3)	guanine	(4)	adenine	
37.	More than one o							
	(1) degeneracy	(2)	regeneracy	(3)	continuity	(4)	universality	
(333)			7		id		(P.:	r.o.)
							(*)	

20				
38.	If the cytosine would be	content of a duplex	is 30% of the total	bases, the adenine content
	(1) 10%	(2) 20%	(3) 30%	(4) 60%
39.	Which of the i	mmunoglobulins c	rosses the placents	a and reaches to fetus?
	(1) IgA	(2) IgM	(3) IgG	(4) IgE
40.	Light reactions	take place in		
	(1) stroma		(2) grana	*
	(3) endoplasmi	c reticulum	(4) Golgi body	
41.	In cell cycle, th	e pre-DNA synthe	sis phase is terme	d as
	(1) G2 phase	(2) S phase	(3) G1 phase	(4) M phase
42.	Crossing-over to	akes place in whic	h stage?	
	(1) Pachytene	(2) Zygotene	(3) Leptotene	(4) Diplotene
43.	The mixture of	H ₂ and CO is an	industrial fuel kno	wn as
	(1) fuel gas		(2) water gas	
*	(3) industrial ga	AB.	(4) vapour	
			s .	·
(333)	•		8	

44.	On spot treatment of environment	pollutant is known as	
No.	(1) In situ	(2) Ex situ	
	(3) local	(4) transported	
45.	Endorphin is a		
	(1) lipid	(2) protein	
	(3) carbohydrate	(4) nucleic acid	
46.	The loss or addition of one or mor	re chromosomes is known as	
	(1) polyploidy	(2) aneuploidy	
	(3) euploidy	(4) aploidy	
47.	Who said, "ontogeny recapitulates	ontogeny" ?	
	(1) Robert Hook	(2) Haeckel	
	(3) Baltimore	(4) Crick	
48.	The science of improving human :	stock is known as	
	(1) genetics	(2) biology	
	(3) eugenics	(4) animal science	
333)		9 <i>(P.</i>	T.O.,

49.	Adenovirus contains
	(1) double-stranded DNA, nonenveloped
	(2) double-stranded DNA, enveloped
	(3) double-stranded RNA, nonenveloped
	(4) single-stranded RNA, enveloped
50.	Any gene that is placed into a plasmid is called
	(1) small plasmid (2) DNA
	(3) insert (4) trans gene
51.	A single stranded DNA/RNA molecule used to detect the presence of complementary nucleic acid is called
	(1) sensor (2) probe (3) insert (4) detector
52.	Oxidative stress is caused due to
	(1) production of excessive free radicals
	(2) production of excessive HCl in stomach
	(3) indigestion
8	(4) low BMR

9 3.	Will traffice are mr aftering man	at the second se	
	(1) decrease immunogenicity of an a	antigen	8
	(2) increase immunogenicity of an a	intigen	
	(3) decrease immunity	ы — — — — — — — — — — — — — — — — — — —	
	(4) increase immunity		
5 1	*	g g	
54.	Confining the enzyme molecules to	a distinct phase is known as	×
	(1) immobilisation	(2) purification	
	(3) adsorption	(4) absorption	v
55.	An analytical device which employs a with an analyte and measures the g- called as	a biological material to specifically inte enerated electrical signal by transduce	ract er is
	(1) electrometer	(2) biosensor	
	(3) conductor	(4) amplifier	
56.	The disease of tomato is caused by		18
	(1) Alternaria solani	(2) Fusarium oxysporium	
	(3) Helminthosporium sativum	(4) Erysiphe polygoni	
			T ()
33 }	1	ı (P.	T.O.)

57.	'Caryopsis' is the fruit in	member of the family
	(1) Fabaceae	(2) Asteraceae
	(3) Poaceae	(4) Apiaceae
58,	Which of the following anti	ibiotics inhibits the translation in eukaryotes?
	(1) Tetracyclin	(2) Puromycin
25	(3) Penicillin	(4) Chloromycetin
59.	Polymerase chain reaction	was developed by
	(1) Watson and Crick	(2) Har Govind Khorana
	(3) Albert Smith	(4) Kary Mulis
60.	The first immunoglobulin s	ynthesized by the fetus is
	(1) IgA (2) IgG	(3) IgM (4) IgE
61.	When atoms or ions are mis	sed or misplaced in a crystal, the defects are called
	(1) surface defect	(2) point defect
,	(3) unit cell defect	(4) displacement
62.	The molarity of a 250 ml ac	plution containing 0.1 mole of NaOH would be
	(1) 0·1 mole/litre	(2) 0·2 mole/litre
	(3) 0·3 mole/litre	(4) 0.4 mole/litre
(333)	~	12

	(1)	increases			,	à:		
	(2)	decreases	20 K		8			
	(3)	first increases	and then decre	ases	·		18.	
	(4)	first decreases	and then incre	ascs				
64.	The	order of react	ion for radioacti	ive dec	ay is			
	(1).	firet	(2) second	(3)	third	(4)	zero	
65.	Wha	at is produced	when ethanol vaj	pours e	re passed over	alun	nina at 600	K?
	(1)	Ethane	(2) Ethene	(3)	Acetylene	(4)	Methane	
66.	The	metal oxide v	vhich is known	as phil	osopher's woo	l		
	(1)	ZnO	(2) CuO	(3)	FeO	(4)	CdO	
67 .	Give	e one example	of substance us	sed in	hair dye		2	ā
	(1)	amino phenol	•	(2)	cyclomethicor	1e		
M 40	(3)	butylene glyco	1	(4)	propylene gly	col		
68 .	I m	M is equal to				ē		
X.	(1)	1 nmole/ml		(2)	1 μmole/ml			
	(3)	1 pmole/ml		(4)	1 fmole/ml			
			to to					
1996				13	#EC			(P.T.O.)

After dissolution of iodine in a solution, the entropy

69 .	The sum of pKa	and pKb is equ	al to	w v	
	(1) 12	(2) 14	(3) 10	(4) 7	
70.	How many diffe	rent stereoisome	rs are possible wi	th an aldohexeec?	
	(1) 4	(2) 8	(3) 12	(4) 16	
71.	A DNA has 2·1: would be	×10 ⁵ nucleotides	in its coding str	and. The number of codo	ns
	(1) 7×10 ⁴	(2) 6×10 ³	(3) 7×10^3	(4) 4×10^3	
72.	In which of the	following compo	unds C-H bond	length is minimum?	
	(1) Ethane		(2) Ethene		
	(3) 1,2-dichloroe	ethene	(4) 1,2-dichl	oroethane	
73.	Freons are	**	e e e e e e e e e e e e e e e e e e e		
	(1) chlorofluoroc	arbons	(2) aromatic	molecules	
	(3) unsaturated	fats	(4) carbohyd	rates	
74.	Cryophytic algae	grow on			
	(1) rocks	(2) water	(3) soil	(4) ice and snow	
9		10-	8 *		
(333)			14	2	

75 .	An animal which is unicellular, n	nicroscopic with no tissues is ci	med as
	(1) Metazoa (2) Protozoa	(3) Chordata (4) virus	
76.	The organism which contains bot	th the chloroplast and flagella is	
	(1) Paramecium	(2) Amoeba	s
	(3) Euglena	(4) Trypanosoma	
77.	Which one is commonly known a	as 'pond silk' ?	•
	(1) Ulothrix	(2) Spirogyra	Al .
	(3) Chara	(4) Batrachoepermum	
78.	Litmus is a natural dye obtained (1) algae (2) fungi	l from (3) lichens (4) coral	s
79.	Bordeaux mixture consists of	•	
· ·	(1) lime and calcium sulphate	(2) sulphur and lime	
20	(3) copper sulphate and lime	(4) copper sulphate and su	ılphur
8 0.	The nurse cells are present in t	he sporogonium of	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(1) Riccia	(2) Marchantia	đ.
	(3) Angiosperms	(4) Gymnosperms	
(333)		15	(P.Ť.Ō.)
1	9		

81.	Which of the foll	owing is classified	l as an caste	m cycad?	
		(2) Stangeria	M	zamia (4) 2	Zamia
82.	Which of the foll	owing cells are pr	esent only ir	sponges?	50 50
	(1) Erythrocytes		(2) Blasto	cytes	
	(3) Neurons		(4) Funne	l cells	y *
83,	Which of the following	owing is called "Ti	he Lantern o	f Aristotle'?	
	(1) Starfish	(2) Sea anemon		-	lydra
84.	'Hipnotoxin' is fo	und in			
	(1) Nematocysts		(2) Sponge	:5	-
	(3) Ascaris		(4) Protozo	88.0	2
85.	The common feat	ure of rennin, am	ylase and try	pain is that i	they are
	(1) proteins		(2) vitamir		
	(3) nucleic acids		(4) carbohy	drates	
86.	The vitamin needs	d for maturation	of erythrocyt	ca is	
			(3) D	.(4) K	F.
(333)	20 25	16	.		

67 .	Light reaction in pl	notosynthesis pro	duces	
	(1) oxidising entity		(2) reducing entity	
	(3) CO ₂		(4) glucose	(Ç
88.	RuDP carboxylase	can utilise follow	ing as a substrate	Ð
35	[1] CO ₂	(2) O ₂	(3) O ₂ and CO ₂ (4) water	
89 .	The molecule which	n binds to the a	tive site in an enzyme is called	ā
	(1) substrate	a.	(2) activator	¥
	(3) inactivator	16	(4) non-competitive inhibitor	
90.	The genetic materia	al of Simian Viru	s 40 (SV 40) is	*
	(1) DNA		(2) RNA	9*
	(3) RNA-DNA hybri	id	(4) peptidonucleic acid	9
91.	The fibronectin is	a	*	
7. 1	(1) nucleoprotein		(2) glycoprotein	
	(3) lipoprotein		(4) phosphoprotein	
92.	The red pigment fo	ound in the ripe	tomatoes are called	8e 70
		(2) leukoplast	(3) chloroplast (4) caroten	e
			,	(P.T.O.)
333)		7	7	(2.1.0.)

93.	Replication takes place in		est production of the control of the
	(1) cytoplasm	(2)	nucleus
	(3) Golgi body	(4)	endoplasmic reticulum
94.	The transcription in prokaryotes is	cata	lyzed by
	(1) RNA polymerase I	(2)	DNA polymerase II
	(3) RNA polymerase II	(4)	DNA polymerase III
95.	Nucleoli are rich in		e Para
	(1) RNA	(2)	carbohydrates
	(3) DNA	(4)	fatty acids
96.	EFG factor is also called as		
	(1) aminoacyltransferase	(2)	oxidase
	(3) hydrolase	(4)	translocase
97.	Lac Operon is		•
	(1) inducible-repressible system	(2)	repressible system
	(3) inducible system	(4)	sluggish system
98.	Polytene cells are destined to die b	CCAU	se they are
	(1) unable to undergo mitosia	(2)	unable to undergo meiosis
	(3) unable to undergo maturation	(4)	short lived
333)	10	8	

99.	Which one from the following is as	n alka	loid?
	(1) Menthol	(2)	Morphine
	(3) Anthocyanin	(4)	Benzoquinone
00.	Artemisin, a plant product, is use	d agai	nst
Na.	(1) filariasis	(2)	ascariasis
*	(3) malaria	(4)	cancer
.01.	The chemical nature of penicillin i	is	
	(1) polyene	(2)	peptide
	(3) aminoglycoside	(4)	spirolactone
02.	Nitrogenase is protected from O2	by	**
	(1) N ₂	(2)	haemoglobin
	(3) myoglobin	(4)	leghemoglobin
103.	Satellite DNA is made up of		
	(1) tandemly repeated sequences	(2)	unique sequences of DNA
	(3) minichromosomes	(4)	interspersed repeated sequences
104.	Protein transport into mitochondr		
	(1) co-translationally	(2)	post-translationally
	(3) via peroxisomes	(4)	through ER-Golgi pathway
(222)		19	(P.T.O.)

İ

105.	Collagen is rich in	e e
	(1) histidine	(2) hydroxyproline
	(3) tryptophan	(4) alatine
106.	Measles is caused by	
	(1) bacteria	(2) Puccinia virus
	(3) Rubeola virus	(4) fungi
107.	What would be a likely explanate	ion for the existence of pseudogenes?
	(1) Gene duplication	
	(2) Gene duplication and mutat	ion evente
6	(3) Evolutionary pressure	
	(4) Unequal crossing-over	* 2 *
108.	Which of the following modificati	on leads to protein degradation?
	(1) Acetylation	(2) Phosphorylation
	(3) Ubiquitination	(4) Methylation
109.	During mismatch repair in E. co.	h, the parental strand is recognized by
	(1) single-stranded break	(2) glycosylated adenines
	(3) double-stranded breaks	(4) methylated adenines
(333)	9 9	20

110.	Which of the following is a role of	gRNA?
	(1) Self-splicing	(2) Polyadenylation
	(3) RNA splicing	(4) Chemical modification of rRNA
111.	Most protection against viral disc activities of	ase in the body takes place through the
	(1) interferon molecules	(2) penicillin molecules
	(3) antigen molecules	(4) antibody molecules
112.	Skin cancer is induced by which to harmful UV rays in sunlight?	ype of DNA damage caused by exposure to
	(1) Depurination	(2) Deamination
	(3) Pyrimidine dimer formation	(4) Alkylation
113.	Cesium (Cs) belongs to	
	(1) sl-block (2) s2-block	(3) p2-block (4) p5-block
114.	Which one of the following reactistructure?	on intermediates does not have a planar
	(1) Alkyl carbocation	(2) Alkyl carbanion
	(3) Alkyl free radical	(4) Singlet carbene
(333)	. 2	(P.T.O.)

115.	The master brake of	f the cell cycle i	8		E E
	(1) cyclin proteins		(2) p21	ψ is	× 11
	(3) Rb protein	1500 No.	(4) p7		
116.	Monopolin is a	ă	19		
	(1) complex carbohy	drate	(2) mitosis	specific pro	tein complex
	(3) lipid	8 8	(4) meiosis	specific pro	otein complex
117.	The pyrimidine base	es present in Di	NA are	*	w .
	(1) cytosine and ad	enine	(2) cytosine	and guant	ne
	(3) cytosine and the	ymine	(4) cytosine	and uraci	ls ver
118.	Germ-line cells give	rise to	**************************************	e	, e
	(1) eggs	8	(2) sperms		
	(3) eggs or sperms		(4) somatic	cells	2
119.	Which of the follow	ing is most stat	ole ecosystemi	•	
	(1) Forest (2) Grass land	(3) Ocean	(4)	Desert
120.	Maximum biodivers	ity occurs at	<u>s</u> 185		
	(1) poles (2) equator	(3) tempera	ite (4)	tropics
(333)		. 2	2		

121. The innate immu	ne systems include
----------------------	--------------------

- (1) macrophages, neutrophils and dendrites
- (2) macrophages, neutrophils and RBCs
- (3) RBCs, chief cells and dendrites
- (4) mast cells, β-cells and dendrites

122. Adaptive immunity is mediated by

(1) T-lymphocytea

- (2) B-lymphocytes
- (3) Both T- and B-lymphocytes
- (4) neutrophils

123. Antibodies chemically are

(1) proteins

(2) polysaccharides

(3) glycoproteins

(4) complex lipids

124. The biologically predominant form of DNA is

(1) left-handed Z-DNA

- (2) right-handed B-DNA
- (3) right-handed A-DNA
- (4) left-handed A-DNA

125. UAA, UAG and UGA encode for

(1) 2 amino acids

(2) 3 amino acids

(3) 9 amino acids

(4) No amino acids

(333)

23

(P.T.O.)

126.	Hydrophobic drug transporters found in plasma membrane are kept und				
	(1) channels	(2)	pumps		
	(3) ABC cassettes	(4)	group translocators		
127.	Effect of holding one's breath on blo	bod	pH would be		
	(1) increase in pH	(2)	unaltered pH		
	(3) decrease in pH	(4)	neutral pH		
128.	The ratio k _{cat} /K _m provides a good n	ncas	rure of		
	(1) catalytic affinity	(2)	catalytic efficiency		
	(3) rate of reaction	(4)	transition complex		
129.	Epimers differ by the configuration	abou	ıt only		
	(1) one carbon atom	(2)	two carbon atoms		
	(3) three carbon atoms	(4)	None of the above		
130.	n-Dodecanoic acid known as lauric	acid	is a		
:	(1) protein	(2)	nucleic acid		
	(3) fatty acid	(4)	polysaccharide		
(333)	24				

131.	The nucleotide sequences of a she forwards are said to be	ort DNA that read alike backwards and	
	(1) consensus sequences	(2) palindromic sequences	
	(3) satellite DNA	(4) All of the above	
132.	The DNA of phage lambda is		
	(1) single stranded linear DNA	(2) linear duplex DNA	
	(3) circular single stranded DNA	(4) circular double stranded DNA	
133.	The chemical reaction that converts called	glucose to pyruvic acid in a living cell is	
	(1) glycolysis	(2) fermentation	
	(3) citric acid cycle	(4) All of the above	
134.	Blood clotting factor X is also known	t as	
	(1) Fletcher factor	(2) Gageman factor	
	(3) Fitzgerald factor	(4) Stuart factor	
135.	Dietary niacin is used to synthesize of the following		
	(1) FAD+ (2) NAD+	(3) FADH (4) CoA-SH	
		a.	
(333)	25	(P.T.O.)	

136.	Grances are		
	(1) C ₃ plants	(2) C ₄ plants	
	(3) succulent plant	(4) All of the above	4//
137.	Fusion between motile gametes of	unequal size is known as	
2011	(1) isogamy	(2) anisogamy	•
	(3) dichogamy	(4) hologamy	
138.	The edible part of litchi is	μα	
	(1) mesocarp (2) thalamus	(3) aril (4) so	ed coat
139.	Body in Scoliodon is covered by		
	(1) dermal plates	(2) placoid scales	
	(3) cycloid scales	(4) ctenoid scales	
140.	The study of reptiles is known as		
	(1) ornithology	(2) ichthyology	.
	(3) herpetology	(4) Carinatae	
141.	Sweat glands are absent in the si	kin of	•
	(1) rabbit (2) man	(3) cat (4) n	ut
(333)		26	

142.	Bipolar neurons are found in				
	(1) cornea	(2) conjunctiva	(3) retina	(4) lens	
143.	The muscle fibers	are			
ě	(1) syncytial		(2) perimy	sium	
	(3) sarcolemma		(4) endomy	sium	
144.	Convergent evoluti	on is illustrated	by	14	
.a	(1) rats and dogs		(2) starfish	and cuttlefish	
	(3) bacterium and	protozoans	(4) dogfish	and whale	
145.	Which of the follow	ving is a stronge	st acid?	y.	į
* *	(1) Cl ₂ CHCOOH		(2) CIF ₂ CC	оон	
	(3) F ₃ CCOOH		(4) CH ₃ CO	ЭН	
146.	The hybridized sta	te of carbons in	сн₃—с=сн	is	Э
	(1) sp2 and sp		(2) sp3 and	i sp	
	(3) sp		(4) sp3	li .	
147.	Which of the follow	ring is not a ster	oid hormone	•	
	(1) Progesterone		(2) Oxytocia	3 50	
×	(3) Cortisone	9	(4) Estrone		5
/ **					W = 0
(333)		27			(P.T.O.)

148.	. The mode of action of a steroid hormone involves		
	(1) binding to a cell me	mbrane receptor	y 9
	(2) activation of protein	kinase	
	(3) modifying gene trans	scription	
	(4) covalent modification	n of enzymes	
149. The mad cow disease in cattle is associated to			ated to
	(1) bacteria	(2)	prions
	(3) virus	(4)	protozoans
150.	The cross of FI with its	homozygous rec	essive parent is called as
	(1) test cross	(2)	back cross
79	(3) top cross	(4)	direct cross
			*

MSc Entrance Exam Combo Set

Biotechnology & Life Sciences

https://www.amazon.in/Pathfinder-Academy-Biotechnology-Sciences-Entrance/dp/8190642766

https://www.flipkart.com/pathfinder-academy-m-sc-biotechnology-life-sciences-entrance-exam-combo-set/p/itmegchtfm9nkytk?

Pathfinder Academy

pathfinderacademy.in | 9818063394

अभ्यधियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त,* लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया वायेगा, केवल उत्तर-
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रवम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिवे कृतों को गाढ़ा कर दें। जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं० और ओ० एम० आर० पत्र सं० की प्रविष्टियों में उपिरलेखन की अनुमित नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रश्चेक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केक्ल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ०एम०आर० उत्तर-एव परीक्षा भवन में जमा कर दें।
- परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंढ का/की, भागी होगा/होगी।