M. Sc Am Applied Microbiolog

ation Pooklat No

https://pathfinderacademy.in/

				Questio	on bookiet No
	(To be fille	ed up by the	candidate	by blue/	/black ball-point pen)
Roll No.					56
Roll No.					
(Write the dig	gits in words) OMR Answer			14	
Serial No. of	OMR Answer	Sheet			
Day and Dat	е				(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the OMR Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गये हैं।]

Total No. of Printed Pages: 30

https://pathfinderacademy.in/

16P/292/9

No. of Questions: 150

Time	$: 2\frac{1}{2} I$	lours]				[Full	<i>Marks</i> : 450
Note:	(1)	Attempt as m	any question	s as you	can. Each qu	estion carries	s 3 (Three)
		marks. One m	ark will be i	deducted f	or each incor	rect answer.	Zero mark
		will be awarde	ed for each un	attempted	question.		
	(2)	If more than o	ne alternative	answers	seem to be ap	proximate to	the correct
		answer, choos	e the closest o	ne.	,		
		2					
1.	The calle	forced deposit d:	tion of airbor	ne particle	es usually on	a solid agar	surface is
	(1) l	Deposition		(2)	Impaction		
	(3)	Sedimentation		(4)	Splitting		
2.	Bacte	erial extracellu	lar polymers j	present in	biofilms are k	nown as :	
	(1) (Glycocalyx		(2)	Epicalyx		
	(3) (Calyptra		(4)	Calyx		
3.	Less	than 1% sunlig	tht is present	in which o	f the followin	g zones ?	
		Littoral	(2) Benthic		Profundal	(4) Limr	netic
4.	Intra	cellular vesicle	s are found in	:			
		indomycorrhiz			Ectomycorrl	niza	
	(3) E	ctendomycorrl	niza	(4)	None of the	above	
		127 14	Consumption of the Consumption o	(3)		3-55 M	P. T. O.

5.	Methane is the central molecule of wh	ich cycle :
	(1) Nitrogen	(2) Phosphorus
	(3) Carbon	(4) Sulphur
6.	Purple and green phototrophic bacteri	a are isolated by :
	(1) Winogradsky column	
	(2) Sepharose column	
	(3) Blue sepharose column	
	(4) Concanavalin A column	
7.	A free living aerobic and non-photosy	nthetic nitrogen fixing bacterium is:
	(1) Anabaena	(2) Clostridium
	(3) Azotobacter	(4) Rhizobium
8.	Bacteria involved in two step conversi	on of ammonia into nitrate are:
	(1) Azotobacter and Nitrosomonas	
	(2) Pseudomonas and Nitrobacter	
	(3) Azotobacter and Achromobacter	
	(4) Nitrosomonas and Nitrobacter	8) 8)
9.	This organism causes infection of the	urinary tract :
	(1) Giardia	(2) Trypanosoma
	(3) Plasmodium	(4) Trichomonas
	(4	

10.	Opportunistic infections often are	e caused :		
	(1) By commensals			
	(2) Due to hosts weakened imm	une systen	m	
	(3) Due to reduction in indigeno	ous microb	piota	
	(4) All of the above		,	
11.	Hydrothermal vents are also kno	own as:		
	(1) Black smokers	(2)	White smokers	
	(3) Black vents	(4)	None of the above	
12.	Water fit for human consumption	n is technic	cally called :	
	(1) Potable	(2)) Portable	
	(3) Polluted	(4)) Planktonic	
13.	Fossilized microbial mats are known	own as :		
	(1) Stromatolites	(2)) Stalagtites	
	(3) Stalagmites	(4)) Stromata	
14.	The CH ₄ released into the atmos	phere is th	he highest from which source :	
	(1) Ruminants	(2)) Termites	
	(3) Paddy fields	(4)) Natural wetlands	
15.	Anaerobic sulphate reduction is o	carried out	t by:	
	(1) Thiobacillus	(2)) Desulfovibrio	
	(3) Desulfuromonas	(4)	Beggiatoa	
	# standards	(5)	D.	т с

16.	Micro-organisms that can multiply	at 100-108 C would mostly be:
	(1) Hyperthermophilic archaea	(2) Thermophilic subaerial fungi
	(3) Thermophilic bacteria	(4) Marine protozoa
17.	Transformation experiments were f	first performed in :
	(1) Escherichia coli	(2) Salmonella typhi
	(3) Diplococcus pneumoniae	(4) Pasteurella pestis
18.	The fibrillar nature of the bacterial g	genomic DNA is due to the presence of :
	(1) Proteins HU and H-NS	(2) Proteins A and D
	(3) Proteins H3A and H3B	(4) Protein RecA
19.	The is where organisms the plants are growing.	hat are found on and in the aerial surface
	(1) Rhizosphere	(2) Phyllosphere
	(3) Rhizoplane	(4) Desert crust
20.	Which of the following functions is	attributed to growth promoting bacteria?
	(1) Inhibit competeting bacteria by	producing antibiotics
	(2) Promote plant growth by produ	ucing chemical signals
	(3) Decompose the organic mate	erials secreted by the plant making the again
	(4) All of the above	
		(6)

21.	The function of th	e enzyme primase	during DNA replica	tion is to:		
	(1) Synthesize DI	NA primer				
	(2) Synthesize Ri	NA primer				
	(3) Induce DNA	supercoiling				
	(4) Induce DNA	relaxation				
22.	When it introduction into the DNA of t		ants, Agrobacterium	introduces		
	(1) m-RNA	*0	(2) Ti plasmid			
	(3) c DNA		(4) T DNA			
23.	Methanotrophic b	acteria :				
	(1) Oxidize meth	ane gas				
	(2) Are responsib	le for green house o	effect			
	(3) Produce methane gas					
	(4) Utilise methan	ne gas as electron so	ource for reduction p	process		
24.	The consensus sec	uence of the Pribno	ow box is:			
	(1) TTGACA		(3) TGGGCC	(4) TATAAT		
25.	One of the protein	s required for the te	ermination of transcr	iption is:		
ø	(1) Rho	(2) Sigma	(3) CAP	(4) p102		
		(7)				
				P.T.O.		

26.	The function of recognizing both the ar amino acid rests with:	mino acid and the specific tRNA for tha	at
	(1) Aminoacyl t-RNA synthetase	(2) Chaperonin	
	(3) Peptidyl transferase	(4) Selenocysteine	
27.	Foods packaged in plastic for microway	zing are :	
	(1) Dehydrated	(2) Autoclaved	
	(3) Freeze dried	(4) Packaged aseptically	
28.	Which type of radiation is used to prese	erve foods?	
	(1) Ionising	(2) Non-ionising	
	(3) Radiowaves	(4) Microwaves	
29.	The approximate number of proteins ribosomes is:	s in the small subunit of prokaryoti	C
	(1) 10 (2) 21	(3) 32 (4) 39	
30.	Halophiles grow in concentrated salt so	olution due to:	
	(1) Bacteriorhodopsin		
81 W	(2) Branched hydrocarbon chain in pho	ospholipids	
	(3) Active absorption		
	(4) Accumulation of KCI		
	(8))	

31.	Which of the following reaction is an oxidation carried out by <i>Iniobacillus</i> ferroxidans:					
	(1) Fe ²⁺	Fe ³⁺	(2)	Fe ³⁺	Fe ²⁺	
	(3) Cu ²⁺	Cu ³⁺	(4)	Fe ⁰	Cu ⁰	
32.	What type of ferme	entation is used to pr	odu	ce yoghurt?		
	(1) Lactic acid ferr	nentation	(2)	Propionic acid		
	(3) Butane diol fer	mentation	(4)	Mixed acid ferr	nentation	
33.	UGA is a stop coo UGA codes for :	lon in the universal	gen	etic code. Howe	ever, in Mycoplasma,	
	(1) Glycine	(2) Arginine	(3)	Leucine	(4) Tryptophan	
34.	Specialized transd	uction was first di	scov	ered with whic	th of the following	
	(1) gal	(2) pro	(3)	lac	(4) his	
35.	The approximate u	upper limit of DNA th	nat c	an be cloned in a	a cosmid vector is:	
850	(1) 15 kbp	(2) 20 kbp	(3)	35 kbp	(4) 45 kbp	
36.	The first primer to	primer product in a l	PCR	appears in which	ch cycle :	
	(1) First	(2) Second	(3)	Third	(4) Fourth	
37.	Which of the follow	ving is the correct con	mbir	nation ?		
	(1) Low BOD, low	DO	(2)	High BOD, high	n DO	
	(3) Low BOD, high	n DO	(4)	None of the abo	ve	
		(9)				
		701 102 701			P.T.O.	

38.	. 2, 4, 5- T is a herbicide, the persistence of which in soil is approximately:						
	(1) 20 days	(2)	20 weeks	(3)	20 months	(4)	20 years
39.	The plasmid found	in A	grobacterium rh	izoger	ies is :		
	(1) Ti	(2)	Ri	(3)	pUC	(4)	YAC
40.	A nutritional mutar	nt wi	ith the requirer	nent -	of a specific gro	wth	factor is knowr
	(1) Auxotroph			(2)	Necrotroph	r	
	(3) Prototroph			(4)	Autotroph		
41.	Which of the follow	ing i	mutagens is a b	ase a	nalogue ?		
	(1) Nitrous acid			(2)	Ethidium brom	ide	
	(3) 5-Bromouracil			(4)	Nitrosoguanidi	ne	
42.	DNA damage induc	ces tl	ne protease fun	ction	of which protein	n :	
	(1) Lex A			(2)	Rec A		
	(3) Topoisomerase			(4)	Replicase		
43.	Knallgas bacteria ca	ın ox	idize :		>		
	(1) Sulphur	(2)	Methane	(3)	Hydrogen	(4)	Ammonia
44.	Selman Waksman is	s cre	dited with the	disco	very of:		is .
	(1) Penicillin			(2)	Streptomycin		
	(3) Chloramphenio	col		(4)	Cycloheximide		
			(10)			

45.	Three distinct phylogenetic lineages of Woese have been identified through:
	(1) mRNA sequences (2) rRNA sequences
	(3) Protein sequences (4) tRNA sequences
46.	Koch's Postulates was an outcome of work with:
	(1) Polio (2) Tuberculosis
	(3) Anthrax (4) Small pox
47.	The first microbiologists to study the role of non-pathogenic microbes in environment were :
	(1) Ivanowsky and Beijerinck (2) Pasteur and Koch
	(3) Winogradsky and Beijerinck (4) Metchnikoff and Kitasato
48.	Porin proteins are found in:
-	(1) Cell wall of Gram positive bacteria
	(2) Cell wall of Gram negative bacteria
	(3) Outer membrane of Gram negative bacteria
	(4) Periplasmic space of Gram negative bacteria
49.	A capsule is similar to pili because both:
	(1) Are made of protein
	(2) Can represent virulence factors
	(3) Are endotoxins
	(4) Are made of polysaccharides
	(11)

50.	. The group firmicutes does not include:	The group firmicutes does not include:							
	(1) Streptococcus (2) Lactobacillus (3)	Clostridium (4) Pseudomonas							
51.	Prokaryotes differ from mitochondria and cl	nloroplasts in :							
	(1) Having circular DNA								
	(2) Reproduction by binary fission								
	(3) Making all of their proteins								
	(4) Making some proteins								
52.	The counterest in and in Counter to in an addition	and Fore							
JZ.	process								
	(1) Safranin (2) Iodine (3)	Crystal violet (4) Carbol fuchsin							
53.	Strain O157: H7 of E. coli has been identified	on the basis of :							
	(1) Lipid A (2)	O-polysaccharide							
	(3) Peptidoglycan (4)	Flagellar antigen							
54.	In Pseudopeptidoglcan, N-acetyl muramic ac	cid is replaced by :							
	(1) N-acetyl glucosamine								
	(2) D-glutamic acid								
	(3) L-lysine								
	(4) N-acetyl talosamine uronic acid	* ex:							
55.	. When comparing bacterial and archael	cell membranes only bacterial							
	membranes:	when a proteins							
	(1) have ether mixedes	have membrane proteins							
	(3) have phospholipius	are fluid							
	(12)	2							

56.	Crescentin is a nomolog of :		
	(1) ribosomal protein	(2) flagellar protein	
	(3) cytoskeletal protein	(4) None of these	
57.	Which of the following bacteria does	s <i>not</i> undergo transformation in nature	?
	(1) Escherichia Coli	(2) Azotobacter	
	(3) Bacillus	(4) Streptococcus	
5 8 .	Plasmid carrying genes for degradat	tion of octane is found in:	
	(1) Rhizobium	(2) Pseudomonas	
	(3) Agrobacterium	(4) Staphylococcus	
59.	Which is true of an Hfr cell?		
	(1) Has a chromosomally integrated	d F factor	
	(2) Lacks pili		
	(3) Does not have genes for conjuga	tive transfer of plasmid	
	(4) Cannot conjugate with F-		
60.	Grinding and mixing of food such as	s hambuger and sausages :	
	(1) Increases food surface area		
	(2) Alter cellular structure		
	(3) Distribute contaminating microo	organisms throughout the food	
	(4) All of the above		
	(1:		
	Sang.	P.	T.O.

61.	Which of the following is not an intrinsic factor in food spoilage?					
	(1) pH	(2) Moisture content				
	(3) Available nutrients	(4) Temperature				
62.	The sequence most likely to be recognize	ized by Eco RI is :				
	(1) AATTCG (2) AACCGG	(3) GAATTC (4) GCTTCG				
63.	Competence is a term associated with:	:				
	(1) Conjugation					
	(2) Specialized transduction					
	(3) Generalized transduction					
	(4) Transformation	at the second se				
64.	Specialized transduction does <i>not</i> invo	olve:				
	(1) Prophage	(2) Virulent phase				
	(3) Recepient cell	(4) Lysed host cell				
65.	Individual protein subunit of a virus is	s called :				
	(1) Capsid (2) Capsomer	(3) Peplomer (4) Nucleocapsid				
66.	A clear zone within a cloudy lawn	of bacterial cells due to bacteriophage				
	infection is commonly called:					
	(1) Negri body	(2) Syncytia				
	(3) Inhibition zone	(4) Plaque				
	(14	4)				

67.		been associated with:						
	(1)	Prions	(2)	Viroids	(3)	Viruses	(4)	Bacteria
68.	Pro	tein only hypoth	nesis	proposed by P	rusir	ner was for :		
	(1)	Virusoids	(2)	Viroids	(3)	Prions	(4)	Enzymes
69.	НΙ	V normally infec	ts:					
	(1)	T-helper cells			(2)	CD4 + cells		
	(3)	Macrophages			(4)	All of the above	3	
70.		olister-like lesion gal infection :	on	the scalp is co	mm	only associated	with	n the following
	(1)	Candidiasis			(2)	Crptococcosis		
	(3)	Dermatophytos	is		(4)	Histoplasmosis		
71.	An	intermediate ho	st is	:				
	(1)	where parasite	asex	ual cycle occurs		ē		
	(2)	always a nonhu	man	host				
	(3)	always some for	m o	f insect vector				
	(4)	where parasite s	sexu	al cycle occurs				
72.	AZ	Γ interferes with	:					
	(1)	Virus entry			(2)	Reverse transcri	ptio	n
	(3)	Virus uncoating				Proteolysis	<i>1</i>	
				(15)				P.T.O.
								10 NO. 20 NO.

73.	To synthesize one hexose molecule from 6 CO2 by Calvin cycle, there is a	
	requirement of:	

- (1) 10 NADPH + 16 ATP
- (2) 18 NADPH + 12 ATP
- (3) 16 NADPH + 10 ATP
- (4) 12 NADPH + 18 ATP

74. Green sulphur bacteria fix CO₂ by:

- (1) Reverse citric acid cycle
- (2) Hydroxy propionate pathway
- (3) Calvin cycle
- (4) Entner-Doudoroff pathway
- **75.** The electron flow in biological nitrogen fixation follows this sequence :
 - (1) Pyruvate Dinitrogenase reductase N2 Dinitrogenase
 - (2) Pyruvate Dinitrogenase reductase Dinitrogenase N2
 - (3) Dinitrogenase Dinitrogenase reductase Pyruvate N2
 - (4) N2 Pyruvate Dinitrogenase Dinitrogenase reductase
- **76.** The *nif* regulon in *Klebsiella pneumoniae* is concerned with:
 - (1) Nitrate reduction

(2) Nitrite reduction

(3) Nitrogen fixation

(4) Denitrification

(16)

77.	Nodulation and the development of a microaerophilic environment to facilitate nitrogen fixation are characteristics of which genus:				
	(1) Agrobacterium		Pseudomonas		
	(3) Escherichia	(4)	Rhizobium		
78.	Common microorganisms which includes:	themselv	res constitute an industrial pi	roduc	
	(1) Baker's yeast (Saccharomyces	cerevisiae)		2	
	(2) Rhizobium				
	(3) Bacillus thuringiensis				
	(4) All of the above				
79.	Fts Z ring has a role in:				
	(1) Cell division	(2)	DNA replication		
	(3) Translation	(4)	Protein folding		
80.	α , β , γ , δ , ϵ , are subdivisions with	nin :		J.	
	(1) Archaea	(2)	Proteobacteria		
	(3) Firmicutes	(4)	Mollicutes		
81.	Rabies, Polio, West Nile fever are	most recog	gnized diseases of :		
	(1) Lymphatic system		Respiratory system		
	(3) Nervous system	(4)	Skeletal system		
		(17)			

82.	An enzyme that adds a phosphoryl group to a compound is:				
	(1) Kinase	(2) Phosphatase			
	(3) Peptidase	(4) Oxido-reductase			
83.	Inducers and repressors of enzyme inde	uction are collectively referred to as:			
	(1) Moderators (2) Modifiers	(3) Effectors (4) Reducers			
84.	Hepatitis B virus belongs to:				
	(1) Hepadnaviridae	(2) Flaviviridae			
	(3) Herpesviridae	(4) Retroviridae			
85.	Heme group in Haemoglobin is an exar	mple of :			
	(1) Coenzyme	(2) Prosthetic group			
	(3) Cofactor	(4) Holoenzyme			
86.	Enzyme activity can be regulated by :				
	(1) Control of enzyme availability				
	(2) Control of enzyme activity				
	(3) Both (1) and (2)				
	(4) Only (2)				
87.	Energy contained in a photon is given b	by:			
	(1) $E = h\lambda$ (2) $E = hc/\lambda$	(3) $E = hc$ (4) $E = h/\lambda$			
88.	In aerobic photosynthesis the molecule	which is protolyzed is:			
	(1) CO_2 (2) $C_6H_{12}O_6$	(3) Chlorophyll (4) H ₂ O			
	(18)				

89.	The number of Manganese ions forming the Oxygen evolving complex are :					
	(1) 2	(2) 4	(3) 8	(4)	16	
90.	Transport of electro	ons from Cytochrom	e b ₆ f to PSI is via:		٠	
	(1) Quinone	9	(2) NADP			
	(3) Phaeophytin	0.	(4) Plastocyanin		, .	
91.	Cellulose differs fro	om glycogen and sta	rch in having glyco	sidic l	inkage :	
	(1) α-1, 3	(2) β-1, 3	(3) α-1, 4	(4)	β-1, 4	
92.	RNA differs from I	ONA in having :				
	(1) OH group on the	he 2' carbon of pento	se sugar			
	(2) Nitrogen base (on the 1' carbon				
	(3) Uracil instead of	of Thymine	s N		i i	
	(4) Both (1) and (3)	i				
93.	Which of the follow	ring statements are tr	rue of Enantiomers	?		
	(1) They are optica	lisomers			1.411	
	(2) They have the s	ame molecular and s	structural formulas		*	
		images of one anoth	ner			
	(4) All of the above					

94.	During protein denaturation the	following does not occur:							
	(1) Polypeptide chains unfold								
	(2) Primary structure is not retained								
	(3) Higher order structure of pro	teins is destroyed							
	(4) Hydrophobic regions beco aggregates	me exposed and stick	together to form						
95.	Which statement is <i>not</i> true of a b	pacterial endospore ?							
	(1) Endospores contain dipicolin	ic acid							
	(2) The endospore core is dehydr	rated							
	(3) Endospore core contains high	level of SASPs							
	(4) SASPs bind to ribosomes paranslation	present in the endospore	core and preven						
96.	Taq and Pfu are examples of :								
	(1) Protease	(2) RNA polymera	se						
	(3) DNA polymerase	(4) Lipase							
§7.	Isoniazid interferes with the synt	hesis of :							
	(1) Mycolic acid (2) Folic acid	d (3) Protein	(4) Nucleic acid						
98.	Bacterial resistance to Penicillin is (1) Efflux (2) Alteration of target (3) Development of resistant bio (4) Inactivation of antibiotic								
	(*)								

(20)

99.	An example of cytolytic toxin is:		
	(1) Diphtheria toxin	(2) Botul	inum toxin
	(3) Staphylococcal α toxin	(4) Tetan	us toxin
100.	Gellan, pullulan, alginate and cure	lan are :	
	(1) Polysaccharides	(2) Antib	iotics
	(3) Polyesters	(4) Lipida	3
101.	Continuous feed during fermental	ion is used to ma	aintain :
	(1) Temperature	(2) Water	level
	(3) Product concentration	(4) Substi	rate concentration
102.	To be suitable for industrial use a	nicroorganism s	hould:
	(1) Be generally stable		
	(2) Be capable of growth and prod	uct fermentation	n in large scale culture
*	(3) Grow rapidly and produce pro	duct in a relativ	ely short period of time
	(4) All of these		
103.	The term primary metabolite refer	to:	
	(1) A product that is produced du at or near stationary phase.	ring the end of	the growth phase, frequently
	(2) A product that is produced du	ing the primary	stage of growth.
	(3) The major waste product produ		
	(4) All of the above		
	(21)	P.T.O.

104.	Breakbone	fever is asso	ciated with:				
	(1) AIDS	(2)	Dengue	(3)	Hepatitis	(4)	Yellow fever
105.	Hepatitis A	and E are to	ansmitted by:				
	(1) Uroger	nital tract					
	(2) Contac	t with body	fluids				
	(3) Gastro	intestinal tra	ct			-	
	(4) Respira	atory tract					
106.	Which of the	he following	is an example o	f a pı	imary metaboli	te?	
9	(1) Ethano	ol (2)	Penicillin	(3)	Erythromycin	(4)	Tetracycline
107.	In a typical	l fermenter t	he function of s ₁	oarge	r is:		
	(1) Provid	le steam in th	ne fermenter du	ring s	terilization		
	(2) Provid	le additional	nutrients so tha	t gro	wth may ensure	<u> </u>	
	(3) Provid	le for proper	cooling of the fe	erme	nter		
	(4) Provid	le a source o	f small air bubbl	es to	help oxygenate	the m	nedium
108.	Glutamic	acid is pro	bably the amii	no ac	cid manufactur	ed by	fermentation
	in the grea	itest quantity	. Its major use i	s:			
	(1) As fla	vour enhanc	er				
	(2) As nu	tritional sup	plement				
			or animal feed				
	(4) As sta	arter materia	l for aspartame				
			(22	2)			

109.	The major use of microbial derived proteases is:						
	(1) Chemical modification of food additives						
	(2) An animal feed						
	(3) As an isomerase during production of high fructose corn syrup						
	(4) As an additive of laundry detergents						
110.	O. Nitrogenous fertilizers disrupt ecosystem structure and function by:						
	(1) Causing formation of nitrosamine carcinogens						
	(2) Promoting heterotrophic growth causing imbalance in carbon dioxide levels						
	(3) Causing more antibiotic producing to grow and produce antibiotics which stunt growth of plants						
	(4) Reducing the number of Nitrogen fixing bacteria in soil						
111.	The manner in which the hydrophobic lipid tails are attached to glycerol in the						
	cytoplasmic membrane is different in :						
	(1) Bacteria and Archaea (2) Bacteria and Eukarya						
	(3) Bacteria and Cyanobacteria (4) Archaea and Methanogens						
112.	Which among these is a method of vinegar production?						
	(1) Orelans method (2) Bubble method						
	(3) Trickle method (4) All of the above						
113.	Production of which of the following is anaerobic process:						
	(1) Ethanol (2) Glutamic acid (3) Citric acid (4) Acetic acid						
	(23)						
	P.T.O.						

114.	Which of the following gives the correct zonal sequence in seas?
	(1) Bathyal, abyssal, intertidal, neritic
	(2) Neritic, intertidal, bathyal, abyssal
	(3) Abyssal, neritic, intertidal, bathyal
	(4) Intertidal, neritic, bathyal, abyssal
115.	Which of the following provides an assessment of the numbers of aerobic and facultatively anaerobic bacteria in water?
	(1) Anaerobic plate count
	(2) Heterotrophic plate count
	(3) Colony forming units
	(4) BOD
116.	The biochemistry of production is most closely related to that of bread leavening:
	(1) Ethanol (2) Glutamic acid
	(3) Citric acid (4) Ascorbic acid
117.	Viral genome with negative strand RNA has:
	(1) RNA in the form of messenger RNA
	(2) RNA complementary to messenger RNA
	(3) Single stranded RNA
	(4) Segmented RNA
	(24)

118.	Viroids can be de	stroyed by :		
	(1) DNAase		(2) Protease	
	(3) RNAse		(4) Both (1) and	d (3)
119.	Wort is a precurs	or of :		
	(1) Beer	(2) White wine	(3) Brandy	(4) Red wine
120.		o eliminate spoilage spoiled. This may be		ng canning, sometime
	(1) Spoilage befo	re canning		
	(2) Underprocess	sing during canning		
		ntaminated water th	rough can seams d	luring cooling
	(4) All of the abo		rough can seams o	turing cooling
	(-)			
121.	The effectiveness food:	of many chemical	preservative dep	ends primarily on the
	(1) Temperature		(2) pH	
	(3) Water content	ŧ	(4) Acidity	
		8.		
122.	Which of the follo	owing refers to the a	ddition of microon	rganisms to the diet in
	order to provide h	ealth benefits beyond	d basic nutritive va	alue ?
	(1) Adjuvants	(2) Prebiotics	(3) Probiotics	(4) Symbionts
123.	Which of the follow	wing is <i>not</i> an examp	le of non-perishab	le foods ?
	(1) Cereals	(2) Rice	(3) Pulses	(4) Milk
		(25)		•
				P.T.O.

124.	Which of the following is not a negatively controlled operon?			
	(1) lac operon	(2) trp operon	(3) mal operon	(4) arg operon
125.	 a_w, which is also refood by micro-organ (1) Water content of (2) Sugar content of (3) pH of the food (4) Nitrogen content 	nisms, is common f the food the food		verns the spoilage of
126.	Which of the follows (1) Phosphatase tes (2) Methylene Blue (3) Multiple Tube F (4) All of the above	t Reduction Test (Mermentation Test	r testing the quality o	of milk?
127.	The common bacter (1) Leuconostoc speci (2) Salmonella speci (3) Clostridium speci (4) Staphylococcus s	ries es ries	Botulism is :	
128.	Sauerkraut is a ferm (1) Soyabeans (3) Cassava		(2) Coconut (4) Cabbage	

129.	Which among these is <i>not</i> an example of Single Cell Protein (SCP)?		
	(1) Chlorella	(2) Spirulina	
	(3) Cellulomonas	(4) Pseudomonas	
130.	Arrange the following groups of roccurrence in soil:	nicro-organisms in descending	order of their
	(1) Bacteria, Fungi, Protists, Nema	itodes, Viruses	
	(2) Bacteria, Protists, Viruses, Nematodes, Fungi		
	(3) Bacteria, Fungi, Viruses, Nema	itodes, Protists	
	(4) Bacteria, Fungi, Viruses, Nema	todes, Protists	*
131.	Because the soil primarily is an environment, the elements such as Carbon, Nitrogen, Sulphur and Iron will tend to be in the state in the soil.		
	(1) Aerobic, oxidized	(2) Aerobic, reduced	
	(3) Anaerobic, oxidized	(4) Anaerobic, reduced	a
132.	For Lambda phage to maintain lys except:	sogeny, the following events sh	ould happen
	(1) Integration of lambda genome i	into host chromosome	S.
	(2) Expression of C II and C III prof	teins	
	(3) Prevention of late protein produ	action	
	(4) Synthesis of cro protein in high	amounts	
	The state of the s	27)	PTO

133.	The terms rooted, unrooted and nodes are commonly associated with:		
	(1) Phylogenetic tree	(2)	Cladistics
	(3) Cladogram	(4)	All of the above
134.	is the process in which micro-organisms are used as a food sourcesulting in nitrogen and phosphorus mineralization.		
	(1) Eutrophication	(2)	Homeostasis
	(3) Nitrogen fixation	(4)	Microbivory
135.	A microbial community that develops surface is called:	in	low areas and retained on the soil
	(1) Zooglea (2) Mycorrhizae	(3)	Microfilm (4) Desert crust
136.	Which of the following genera synthesizes Nod factors in order to activate plant to allow development of infection thread?		
	(1) Agrobacterium		Pseudomonas
	(3) Frankia	(4)	Rhizobium
137.	The nitrogen-fixing form of the Rhizobium is called:		
	(1) Bacteroid	(2)	Symbiosome
. v	(3) Mycorrhiza	(4)	Infection thread
138.	Which of the following genera possess a tumour inducing plasmid?		
	(1) Agrobacterium) Rhizobium
	(3) Pseudomonas	(4) Frankia
	(28	1	8

139.	Addition of nitrogen containing fertilizers affects gas exchange process in the soil :		
	(1) Resulting in release of NO and N2O which are green house gases		
٠	(2) Causing methane gas to be produ	iced	
	(3) Assimilation of NO ₃ by the plants	S	
	(4) Causing antibiotic production resistance	in bacteria which leads to antibiotic	
140.	The symbiotic association of plants and fungus called mycorrhiza was first described by:		
	(1) De Bary	(2) Sergei Winogradsky	
	(3) A. B. Frank	(4) A. M. Ross	
141.	DDT is an example of Persistent Organic Pollutants (POPs) but is known to be degraded by certain bacteria, select the appropriate one:		
	(1) Phanerochaete chrysoporium	(2) Trichoderma viride	
	(3) Aspergillus flavus	(4) All of the above	
142.	The spoilage of wine is due to acidific	ation, which is caused due to presence or .	
	(1) Gluconobacter	(2) Acetobacter	
	(3) Lactobacillus	(4) All of the above	
143.	Who is referred to as the father of anti	hiotics?	
	(1) Sewall Wright	(2) Robert Koch	
	(3) Alexander Fleming	(4) Weismann	
144.	Prografest Challes		
144.	Roquefort, Cheddar, Emmentaler (Swiss), Camembert are types of :		
	(1) Cheese (2) Butter	(3) Milk (4) Proteins	
	(29	P.T.O.	
		1.1.0.	

145.	Kelli is collinolly known as:		
	(1) Fermented milk	(2)	Fermented cereals
	(3) Fermented whisky	(4)	Fermented beer
146.	Mycotoxins are example of :		
	(1) Primary metabolite		
	(2) Secondary metabolite		a* #
	(3) Tertiary metabolite		
(4) Both an example of secondary and tertiary metabolite			ary metabolite
147.	Aflatoxin, Ochratoxin, Sterigmatocystin	are	different types of :
	(1) Aspergillus toxins	(2)	Fusarium toxins
	(3) <i>Penicillium</i> toxins	(4)	Ergot alkaloids
148.	Which of the following is found in milk	?	
	(1) Vibrio (2) Lactobacillus		Pseudomonas (4) Amoeba
	(1) V 10110 (2) Lucioouciiius	(0)	1 semionionionionionionionionionionionionioni
149.	Wood smoke is sometimes used in flav	ouri	ng and preservation of foods due to
	the presence of:		
	(1) Pyragallol	(2)	Catechol
	(3) Phenols and cresols	(4)	All of the above
150.	12D treatment is commonly referred to	as:	
10.1	(1) Botulinal cook		Fulva cook
	(3) Coagulans cook	(4)	Stearothermophilus cook
	V-7		

MSc Entrance Exam Combo Set

Biotechnology & Life Sciences

https://www.amazon.in/Pathfinder-Academy-Biotechnology-Sciences-Entrance/dp/8190642766

https://www.flipkart.com/pathfinder-academy-m-sc-biotechnology-life-sciences-entrance-exam-combo-set/p/itmegchtfm9nkytk?

Pathfinder Academy

pathfinderacademy.in | 9818063394

https://pathfinderacademy.in/

(इस पुरितका के प्रथम आवरण-पृष्ठ पर तथा ओ०एम०आर० उत्तर-पत्र के दोनों पृष्ठों पर केवल *नीली।काली बाल-पाइंट पेन* से ही लिखें)

- 1. प्रश्न पुरितका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुरितकां प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित रथान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुरितका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुरितका पर अनुक्रमांक संख्या और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुरितका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार बाल-प्वाइंट पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिये इस पुरितका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा अंतिम खाली पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ० एम० आर० उत्तर-पत्र ही परीक्षा भवन में जमा करें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का / की भागी होगा / होगी।