Q - 11

ENTRANCE EXAMINATION – 2018 M.Sc. Plant Biology & Biotechnology

Time: 2 hours	Maximum Marks: 100
HALL TICKET NO.	

INSTRUCTIONS

Please read carefully before answering the questions:

- 1. Enter your Hall Ticket number both on the top of this page and on the OMR answer sheet.
- 2. Answers are to be marked only on the **OMR answer sheet** following the instructions provided there upon.
- 3. Hand over the OMR answer sheet to the Invigilator before leaving the examination hall.
- 4. The question paper contains 100 questions (Part-A: Question Nos. 1-25 and Part-B: Questions Nos. 26-100) of multiple-choice printed in 18 pages, including this page. One OMR answer sheet is provided separately. Please check.
- 5. The marks obtained in Part-A will be used for resolving the tie cases.
- 6. Each question carries one mark.
- 7. There is **Negative marking** for wrong answers, in **Parts A and B**. For each wrong answer, 0.33 mark will be deducted.
- 8. Calculators and mobile phones are NOT allowed.

Part-A

1. Arrange the following warning symbols in the correct order from left to right?

- A. Radiation, biohazard, poison, high voltage
- B. High voltage, biohazard, radiation, poison
- C. High voltage, biohazard, poison, radiation
- D. Radiation, poison, biohazard, high voltage
- 2. Which of the following statements about the nature of enzyme catalysis is correct
 - A. An enzyme can change the equilibrium position of the reaction it catalyzes by lowering the energy of activation of that reaction
 - B. An enzyme can lower the energy of activation of the reaction it catalyzes by increasing the molecular collisions between the molecules
 - C. An enzyme lowers the free energy difference between substrate(s) and product(s) but it cannot change the equilibrium position of the reaction it catalyzes
 - D. An enzyme cannot change the equilibrium position of the reaction it catalyzes but it lowers the energy of activation of that reaction
- 3. The reaction of H₂ gas with oxygen gas to form water is an example of
 - A. Combination reaction

C. Redox reaction

B. Exothermic reaction

- D. Endothermic reaction
- 4. Which represents a reduction reaction
 - A. $AgNO_3 + KBr -> AgBr + KNO_3$
 - B. $AgNO_3 + KBr -> AgBr + KNO_3$
 - C. $Cl_2 + 2 e^- > 2 Cl^-$
 - D. $K -> K^+ + e^-$
- 5. To make 1 ml of 20 mM ATP, how much of 10 mM ATP stock should be taken
 - A. 20 μl

C. 200 µl

B. 2 μl

- D. 50 μl
- 6. Which of the following is not a reducing sugar
 - A. D-Fructose

C. D-Ribose

B. Cellobiose

D. Sucrose

7.	Which of DNA	of the following single strands would be p	art of	f a palindrome in double-stranded
	Α.	GAATTC	C.	ATGATG
	В.			CCCTTT
8.	Which function	of the following is most likely to accelera	ate th	ne evolution of proteins with new
	A.	Exon shuffling	C.	Transposon insertions
	В.	•		cDNA insertions
9.	Arrange	e the following processes in cell cycle in co	rrect	order
	1. M	detaphase 2. Telophase 3. Anaphase	4. I	Prophase 5. Cytokinesis
	Α.	1, 3, 4, 2, 5		
		4, 1, 3, 2, 5		
		3, 4, 2, 5, 1		
	D.	5, 4, 3, 1, 2		
10	. Which	one of the following is <u>not</u> a sulfur-contain	ing a	mino acids
	A.	Methionine	Ċ.	Proline
	В.	Cysteine	D.	Homocysteine
11	. The net	gain of energy molecules from glycolysis	pathv	way of one glucose could be
•	A.	2 NADH molecules and 4 ATP molecules	3	
		4 NADH molecules and 3 ATP molecules	3	
		1 NADH molecule and 2 ATP molecules		•
	D.	2 NADH molecules and 2 ATP molecules	\$	
12	. Which	of the following statements is incorrect for	bryc	phytes
	Α.	They have a dominant gametophyte gener	ration	1
		Fertilization occurs in water		
	C.	Presence of non-lignified vascular system	!	
	D.	Occurrence of gametophyte-independent	sporc	phyte
13	. How m	any mitotic cell divisions are required to pr	oduc	ee 2048 cells from a single cell
	A	1024	C	2048
	A. B.	1024 11		2048
	IJ.	**	٠.	
		£		

- 14. Which type of bonding is responsible for the secondary structure of proteins
 - A. Hydrogen bonding between the C=O and N-H groups of peptide bonds
 - B. Peptide bond between two amino acids
 - C. Salt bridges between charged side chains of amino acids
 - D. Disulphide bridges between cysteine residues
- 15. Identify the **mismatch**
 - A. Vessels
- Welwitschia
- B. Manas
- Tiger Reserve
- C. Sacred groves
- ex-situ conservation
- D. Ramsar site
- Renuka lake
- 16. Match the names/features present in 'List A' with their family from 'List B'

	List A		List B
i.	Pollinia	a	Solanaceae
ii.	Neem	b.	Poaceae
iii.	Nightshade	c.	Meliaceae
iv.	Parallel venation	d.	Asclepiadoideae

- A. i-d, ii-c, iii-a, iv-b
- B. i-a, ii-c, iii-d, iv-b
- C. i-d, ii-a, iii-b, iv-c
- D. i-c, ii-a, iii-b, iv-d
- 17. Which of the following is **incorrect** in Student's T test?
 - A. It compares two means of two groups to find out the significant difference between them
 - B. It indicates that if the significant differences could have happened by chance
 - C. A large t-score is indicative of higher similarity between the groups
 - D. Low p-values in a T test are good
- 18. Chromosomal crossing-over during meiosis occurs during
 - A. Prophase I

C. Prophase II

B. Interphase I

D. Interphase II

19. If equal number of blue, red, white and yellow flowering plants are present in a randomized growing population of 100 flowering plants in a culture room, what is the probability of picking a blue or red flower in complete dark

A. 25/100

C. 50/100

B. 75/100

D. 20/100

20. Match the following famous chemical reactions in 'List A' with their end products in 'List B'

	List A		List B
i.	Friedel-Crafts alkylation Reaction	a	Salicylaldehyde
ii.	Coupling Reactions	b.	Ammonia
iii.	Reimer-Tiemann Reaction	c.	Toluene
iv.	Haber's process	d.	<i>p</i> -Hydroxyazobenzene

A. i-d, ii-a, iii-c, iv-b

B. i-c, ii-d, iii-a, iv-b

C. i-d, ii-a, iii-b, iv-c

D. i-c, ii-a, iii-b, iv-d

21. Match the following Nobel laureates given in the 'List A' with their discoveries present in the 'List B'

	List A	"	List B
i.	Yoshinori Ohsumi	a	Chemiosmotic theory
ii.	Frederick Sanger	b.	Interpretation of genetic code
iii.	Peter D. Mitchell	c.	Determination of base sequences in nucleic acids
iv.	Marshall W. Nirenberg	d.	Autophagy

A. i-b, ii-c, iii-d, iv-a

B. i-d, ii-c, iii-a, iv-b

C. i-d, ii-a, iii-b, iv-c

D. i-b, ii-d, iii-a, iv-c

22. Which of the following is not a form of asexual reproduction

A. Parthenogenesis

C. Budding

B. Binary fission

D. Syngamy

8-11

23. Match the characters present in the 'List A' with the correct plant names given in the 'List B'

	List A		List B
i.	Anomalous secondary growth	a	Cannabis
ii.	Epidermal fibre	b.	Linseed
iii.	Phloem fibre	c.	Cotton
iv.	Hemp fibre	d.	Boerhaavia

- A. i-b, ii-a, iii-d, iv-c
- B. i-c, ii-d, iii-b, iv-a
- C. i-d, ii-c, iii-b, iv-a
- D. i-c, ii-a, iii-d, iv-b

24. Match the plant names present in the 'List A' with the corresponding common name/feature in the 'List B'

	List A		List B
i.	Funaria	a	Tree fern
ii.	Equisetum	b.	Aquatic fern
iii.	Salvinia	c.	Xerophytic fern
iv.	Dicksonia	d.	Rhizoids

- A. i-a, ii-c, iii-d, iv-b
- B. i-d, ii-c, iii-b, iv-a
- C. i-c, ii-a, iii-d, iv-b
- D. i-a, ii-d, iii-c, iv-b

25. Match the algae from the 'List A' with the products, extracted from them, presented in the 'List B'

	List A		List B
i.	Dunaliella salina	a	Iodine and potassium
ii.	Macrocystis pyrifera	b.	Carrageenan
iii.	Gracilaria bursa-pastoris	c.	β-carotene
iv.	Chondrus crispus	d.	Agar-agar

- A. i-c, ii-b, iii-a, iv-d
- B. i-b, ii-c, iii-d, iv-a
- C. i-a, ii-c, iii-b, iv-d
- D. i-c, ii-a, iii-d, iv-b

Part-B

26. The mai	in role of phragmoplast during cytokinesis i	s	
Α.	Provides energy	C.	Supports cell plate
	Provides structure materials		None of the above
27. Phages	that show lysogenic cycle are called		
A.	Virulent phages		Temperate phages
B.	Lytic phases	D.	None of these
	of the following statements about the compet is correct	titiv	e inhibition of an enzyme-catalyzed
A.	A competitive inhibitor and substrate can l	oind	simultaneously to the enzyme
В.	The V _{max} and K _m (Michaelis constant) for a	rea	ction are unchanged in the presence
C	of a competitive inhibitor The V_{max} for a reaction remains unchan	oed	in the presence of a competitive
C.	inhibitor	gcu	in the presence of a competitive
D.	The K_m for a reaction remains unchanged in	n the	presence of a competitive inhibitor
29. In plant	s, the major site for de novo biosynthesis of	f fatt	ty acids is
A.	Plastids	C.	Mitochondria
В.	Cytoplasm	D.	Glyoxysome
30. Which	of the following act as precursors for porph	yrin	formation
A.	Histidine and proline	C.	Succinyl CoA and glycine
В.	Tyrosine and glutamic acid	D.	Oxaloacetate and acetyl CoA
31. Which silver	of the following microorganisms leach meta	als c	out of rock ores and can accumulate
A.	Pseudomonas aeruginosa	C.	Pseudomonas putida
В.	Thiobacillus ferrooxidans		. Zoogloea ramigera
32. A gene to spec	tically distinct geographic variety within a sific environmental conditions is called as	spec	sies, which is genotypically adapted
A.	Ecological species	C	. Ecotypes
B.	Ecophenes	D	. Sub-species

33. Which correct	of the following statements about the med	chanism of synthesis of fatty acids is						
A.	Acetyl-CoA is the active donor of two carb	oon atoms in fatty acid synthesis						
В.	•	Malonyl-CoA is the active donor of two carbon atoms in fatty acid synthesis						
C.	Fatty acid synthesis is the reverse of β-oxic	lation of fatty acids						
D.	Coenzyme A is the acyl group carrier of in	termediates in fatty acid synthesis						
34. Which o	of the following is <u>not</u> an example of a biofi	lm .						
Α.	Bacterial colony growing on an agar surface	ee						
В.	Human microbiome							
C.	Toilet bowl scum							
D.	Dental plaque							
35. The app	paratus used for measuring rate of transpirati	on is called						
A.	Lactometer	C. Refractometer						
В.	Potometer	D. Auxanometer						
36. If the o	ccurrence of one event means that another ca	annot happen, then the events are						
A.	Independent	C. Mutually exclusive						
B.	Empirical	D. Mutually dependent						
37. Resista	nce genes found in the commonly used clon	ing vector pBR322 are						
. А.	Bacitracin and kanamycin							
	Tetracycline and ampicillin							
	Chloramphenicol and neomycin							
	Streptomycin and cycloheximide							
38. Striga i	s a							
Α.	Complete stem parasite	C. Complete root parasite						
B.	Partial root parasite	D. Partial stem parasite						
39. If the re	espiration rate is higher than the rate of phot	osynthesis, the plant will						
A.	Die of starvation	C. Not exhibit any change						
	Grow healthier due to more energy	D. Become thin and fall						
40. Synapt	onemal complex during meiosis is formed in	n sub-stage						
Α.	Leptotene	C. Zygotene						
В.		D. Diplotene						
	÷	- · · · · · · · · · · · · · · · · · · ·						

41. In the m	norning, the fresh weight of a plant is usually	grea	ater than that in the evening because
В. С.	Photosynthesis is absent in the night Respiration is less in the night Plants transpire more in the night Plants transpire less in the night		
interact	Beadle and Edward Tatum received Nobelion of genes in biochemical pathways in the hey isolated mutants that were affected in the	ie ha	aploid fungus Neurospora. In their
	Arginine Leucine		Phenylalnine Tryptophan
undergo	ividual of genotype AA BB Cc DD Ee Ff o independent assortment, what fraction of the Aa Bb Cc Dd Ee Ff?		_
A.	1/4	C.	1/8
В.	1/16	D.	1/32
altogeth of meio A. B. C.	hila virilis is a diploid organism with 6 paner). The number of chromatids and chromosis is? 6 chromatids and 6 chromosomes 12 chromatids and 6 chromosomes 12 chromatids and 12 chromosomes 24 chromatids and 12 chromosomes		
45. The enz	cyme responsible for initiating DNA replica	tion	in prokaryotes is
A.	DNA polymerase I	C.	DNA polymerase II
В.	DNA polymerase III	D.	Primase
46. An exa	mple of a post-translational process is		
Α.	Alternative splicing	C.	Spliceosome activity
В.	Antisense knockdown		RNA interference
	ellins were discovered during scientific stud ous in the following plant species	dies	of foolish seedling disease caused
Α.	Secale cereale	C.	Oryza sativa
	Zea mays		Triticum aestivum

- 48. One of the primary reasons for the loss of biological activity in aquatic and marine dead zones is
 - A. Depleted levels of oxygen
 - B. Depleted levels of nutrients
 - C. Migration of species
 - D. None of the above
- 49. Which of the following statements is **incorrect** about passive transport
 - A. It involves movement of ions across cell membrane
 - B. The rate of passive transport depends on the permeability of the cell membrane
 - C. It does not require cellular energy for transportation
 - D. It moves solutes from area of low concentration to area of higher concentration
- 50. Two linked genes are separated by a distance such that exactly 10 percent of the cells undergoing meiosis have one crossover (chiasmata) between the genes and 90 percent have no crossover. The percent recombination between the genes
 - A. 2%

C. 5%

B. 10%

D. 50%

- 51. Queen Victoria was carrier of hemophilia, a sex-linked disease. Which of the following statements is <u>true</u>
 - A. Hemophilia would have occurred more in her males than female descendants
 - B. Queen's father must have had hemophilia
 - C. All of her sons would have had hemophilia
 - D. All of her daughters would have had hemophilia
- 52. On immersing an iron nail into CuSO₄ solution for few minutes, you will observe
 - A. No reaction takes place
 - B. The colour of solution fades away
 - C. The surface of iron nails acquires a black coating
 - D. The colour of solution changes to green
- 53. Which of the following statements is **true**
 - A. Proteins are synthesized always from carboxy terminus to amino terminus
 - B. Proteins are synthesized always from amino terminus to carboxy terminus
 - C. Proteins can be synthesized randomly in any direction
 - D. Direction of protein synthesis depends on type of the protein

54.	Which	of the	following	do not	contain	nucleic	acids
-----	-------	--------	-----------	--------	---------	---------	-------

	N I.,	ıcleu	_
Α.	IND	СЕП	٠

C. Ribosomes

B. Mitochondria

D. Endoplasmic reticulum

55. Match the names given in the 'List A' with the class of major chemical compounds present in the 'List B'

	List A		List B
i.	Natural rubber	a	Morphine
ii.	Black pepper	b.	β-carotene
iii.	Golden rice	c.	Terpenes
iv.	Papaver somniferum	d.	Piperine

- A. i-c, ii-b, iii-a, iv-d
- B. i-d, ii-a, iii-b, iv-c
- C. i-c, ii-d, iii-b, iv-a
- D. i-a, ii-c, iii-d, iv-b

56. Which of the following RNAs are involved in splicing of introns from primary genomic transcripts

A. Ribosomal RNA

C. Transfer RNA

B. Small interfering RNA

D. Small nuclear RNA

57. Endospores are

- A. Certain bacterial spores, enable them to survive in adverse conditions
- B. Certain protozoan fruiting bodies, enable them to survive in adverse conditions
- C. Certain fungal spores, enable their species to survive in adverse conditions
- D. Non-living viral capsules, capable infecting eukaryotic cells

58. During secondary growth, the cells of the cortex of a dicot plant turn meristematic, giving rise to a cork cambium known as

A. Phellem

C. Phellogen

B. Periderm

D. Phelloderm

59. Hydra belongs to the Phylum

A. Cnidaria

C. Platyhelmintha

B. Porifera

D. Echinodermata

	•					•
60.	P	rn	m	വ	Δr	10
vv.		w	111	v		13

A.	Upstream RNA sequence of an mRNA, which recognized by translation initiation
	factors in order to initiate translation

- B. Upstream DNA sequence of a gene, which is recognized by RNA polymerase in order to initiate transcription
- C. Sequence of amino acids in a protein, which promote catalysis of an enzyme
- D. Sequence of amino acids in a protein, which specifically promote oxidative/reductive reactions

	that separates and				net charge	in an
electric field	, usually on solid o	r semi-solid ag	garose medium	is called		

A. DenaturationB. Electophoresis	C. SonificationD. Polymerase chain reaction
---	--

62. A pigment-containing sensory protein found in specialized light receptor cells called rodstats is required for vision in dim light is

A. Melanin C. Rhodopsin B. Sclerotin D. Retinol

63. Seed dormancy inhibited mechanically by causing seed coat injury is called as

A. Scarification
B. Vernalization
D. Humification

64. In which of the following phyla are the sperm non-motile

A. Cycadophyta C. Gnetophyta
B. Ginkophyta D. Lycophyta

65. The T-DNA of one of the following bacterium is de-armed to use as vector to clone gene sequences

A. Xanthomonas campestris

B. Agrobacterium tumefaciens

C. Pseudomonas putida

D. Erwinia carotovora

66. A multiple-layered epidermis consisting of non-living compact cells with lignified strips of secondary walls to provide support, prevent water loss and assist the plant in absorbing water is called as

A. Phelloderm

B. Epithelial

C. Velamen

D. Endothelial

67. Which	stage of the plant development have more re	spir	ration
	Germinating seed Root tip		Growing shoot apex Leaf bud
68. Electron	n transport system happens in which part of	mite	ochondria
	Inner membrane Matrix		Outer membrane Ribosomes
69. What is	the role of kinase enzyme		
	Removal of phosphate groups Addition of methyl groups		Addition of phosphate groups Removal of methyl groups
70. What is	the prosthetic group in chromoprotein		
	Chromophore Nucleic acid		Cytochrome Pigments
71. What is	the by-product in light induced photosynthe	esis	process
	ATP and NADPH O ₂		H ₂ O Carbohydrates
	's tall/dwarf alleles in pea is an example of bioactive	a si	ngle gene locus that can control the
	Auxin		Gibberellin
В.	Cytokinin	D.	Ethylene
	eny and inter-relationship found between t ment of chromosomes is	axa	on the basis of number, type and
	Cytotaxonomy Karyotaxonomy		Chromotaxonomy Chemotaxonomy
74. Viroids	have		
В. С.	* *		

8-11

- 75. A research scholar has newly joined a biology lab for his PhD. His supervisor explained the work and asked him to conduct an experiment with the given bio-molecules and few chemicals/buffers as per given protocol. After mixing all given components, he suggested him to put the tubes at 95°C for 5 min, followed by 30 cycles of 95°C for 1 min, 60°C for 30 Sec, 72°C for 1 min, followed by 72°C for 4 min and 4°C for infinite time. Which experiment his supervisor suggested him to perform?
 - A. Isolation of Heat-Shock protein from mammalian chromosome
 - B. Southern hybridization
 - C. Polymerase Chain Reaction
 - D. RNA isolation from a bacteria collected from high temperature altitude
- 76. Which of the following statements is false
 - A. The bacteriophage has a double-stranded DNA molecule
 - B. TMV has a double-stranded RNA molecule
 - C. Most plant viruses are RNA viruses
 - D. Most animal viruses are DNA viruses
- 77. Endosperm formation begins with
 - A. The establishment of the suspensor
 - B. The fusion of the antipodals
 - C. The syncytial development of the embryo
 - D. The fertilization of the polar nuclei
- 78. Which of the plant mitochondrial electron transport chain complex is <u>not</u> involved in pumping out of H⁺ from mitochondrial matrix to inter mitochondrial membrane space
 - A. NADH dehydrogenase complex
 - B. Succinate dehydrogenase complex
 - C. Cytochrome bC1 complex
 - D. Cytochrome oxidase complex
- 79. In angiosperms, the free nuclear division takes place during
 - A. Gamete formation

C. Flower formation

B. Endosperm formation

D. Embryo formation

- 80. Meiosis cell division is mainly responsible for
 - A. Growth and development of plants
 - B. Production of secondary metabolites
 - C. Increase in the number of mature cells and destroying dead cells
 - D. Maintaining the number of chromosome constant from one generation to other

) [. l	VIICTOR	ıutrient	s are		

- A. Available in the soil only in smaller amounts
- B. Required by plants in smaller amounts
- C. Smaller molecules required by plants
- D. Useful, but not required by plants

82	The	combination	ofn	ressure	notential	and	solute	notential	ic
04.	1110	COMMUNICION	VI D	LOSSULC	potential	anu	SOLUTE	DOUGHHAI	13

A. Water potential

C. Transpiration potential

B. Field potential

D. Osmotic potential

83. A common adaptation of aquatic plants is the formation of

A. Chlorenchyma

C. Aerenchyma

B. Colenchyma

D. Sclerenchyma

- 84. The mature female gametophyte of an angiosperm is
 - A. the archegonium and its egg cell
 - B. the ovule inside the ovary
 - C. the carpel after pollination
 - D. an embryo sac with eight nuclei and seven cells

85. Which of the following is an essential element for all plants

A. Molybdenum

C. Silicon

B. Sodium

D. Selenium

86. In monocots, phloem is composed of specialized cells including

- A. Sieve tubes, companion cells, phloem fibres, and phloem parenchyma
- B. Sieve tubes, companion cells, and phloem fibres
- C. Sieve tubes, companion cells, and phloem parenchyma
- D. Sieve tubes, companion cells, phloem fibres, and vessels

87. The softwood of conifers can be distinguished from the hardwood of angiosperms by the absence of

A. Vessel elements

C. Sieve tube elements

B. Tracheids

D. Companion cells

88. The function of leghemoglobin in the root nodules of legumes is

A. Nodule differentiation

C. Inhibition of nitrogenase activity

B. Expression of nif gene

D. Oxygen scavenging

89.	BAC, PAC and	YACs are	generally 1	used in Mo	lecular Bio	ology labs	. These are
-----	--------------	----------	-------------	------------	-------------	------------	-------------

Δ	Different type	s of DNA	vectors
7.	Different type	מונענטנ	. VUCTUIS

- B. Different types of restriction endonuclease
- C. Names of Bacterial-Aromatic Compound, Plant-Aromatic Compound and Yeast-Aromatic Compounds, respectively
- D. When bacterial genomic DNA sequence ends with A & C = BAC, when Plasmid DNA sequence ends with A & C = PAC, When human Y-chromosome ends with A & C = YAC

90	. Ir	the	evolution	of	land	plants,	sporophytes	became	dominant	over	gametophytes	due
	pı	rima	rily to wha	t ad	aptat	ion						

A. Airborne pollen

C. Vascular tissue

B. Seeds

D. Flowers

91. Reindeer moss is

A. Cladonia rangiferina

C. Sphagnum papillosum

B. Polytrichum stictum

D. Huperzia lucidula

92. Which among the following has not been released as a transgenic crop in the market so far

A. Tomato

C. Apple

B. Papaya

D. Pepper

93. Vivipary is

- A. Seed germination without pollination
- B. Seed germination inside the fruit while attached to the plant
- C. Seed germination inside the fruit in a detached fruit
- D. Seed germination with epiterranean cotyledons
- 94. Vernalization is the process whereby flowering is promoted by
 - A. A cold treatment given to a fully hydrated seed
 - B. A cold treatment given to dry seed
 - C. A cold treatment given to a fully hydrated flower bud
 - D. A cold treatment given to dehisced flower

95. Which of the following component is <u>not</u> essentially required for *in vitro* molecular cloning technique

A. DNA ligase

C. Plasmid

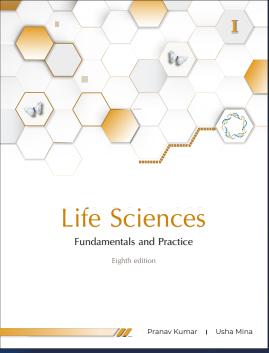
B. DNA topoisomerase

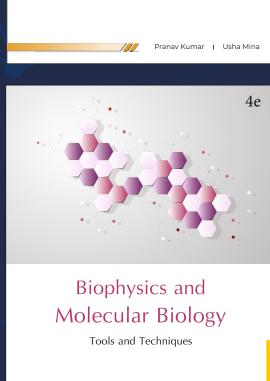
D. Restriction enzyme

96. Match the type of cell wall material given in the 'List A' with the group of organisms it is present in the 'List B'

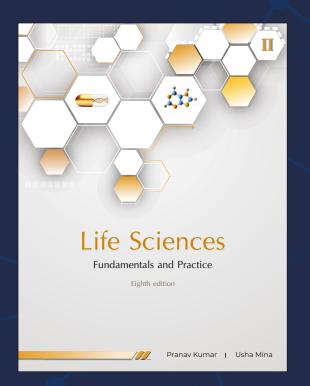
	List A	""	List B	
i.	Chitin	a	Bacteria	
ii.	Lignin	b.	Brown algae	
iii.	Peptidoglycan	c.	Fungi	
iv.	Alginic acid	d.	Angiosperms	

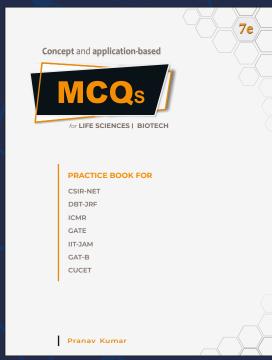
- A. i-c, ii-b, iii-d, iv-a
- B. i-a, ii-d, iii-b, iv-c
- C. i-c, ii-d, iii-a, iv-b
- D. i-a, ii-c, iii-d, iv-b
- 97. What is the natural function of restriction enzymes
 - A. Protecting bacteria by cleaving the DNA of infecting viruses
 - B. Protecting bacteria by cleaving their own DNA
 - C. Protecting bacteria by methylating their own DNA
 - D. Protecting bacteria by methylating the DNA of infecting viruses
- 98. UNFCCC stands for
 - A. United Nations Framework Council on Climate Change
 - B. United Nations Framework Convention on Climate Change
 - C. United Nations Federation Convention on Climate Change
 - D. United Nations Federation Council on Climate Change
- 99. Match the type of diseases given in the 'List A' with their causing agents presented in the 'List B'


	List A		List B	•
i.	Leaf roll of potato	a	Nematode	
ii.	Red-rot of sugarcane	b.	Viral	
iii.	Citrus canker	c.	Fungal	
iv.	Root knot of tomato	d.	Bacterial	


- A. i-c, ii-b, iii-a, iv-d
- B. i-b, ii-c, iii-d, iv-a
- C. i-c, ii-d, iii-b, iv-a
- D. i-a, ii-c, iii-d, iv-b

100. Which of the following statements is <u>not</u> correct for plasmids


- A. A plasmid is a generally a small, circular, double-stranded DNA molecule
- B. A plasmid contains multiple cloning sites
- C. Plasmids cannot be used in genome sequencing projects
- D. A plasmid possesses an origin of replication



Pranav Kumar

MSc

Entrance Exam Combo Set Biotechnology & Life Sciences

https://www.amazon.in/Pathfinder-Academy-Biotechnology-Sciences-Entrance/dp/8190642766

https://www.flipkart.com/pathfinder-academy-m-sc-biotechnology-life-sciences-entrance-exam-combo-set/p/itmegchtfm9nkytk?

Pathfinder Academy

pathfinderacademy.in | 9818063394