	(To be filled up by the candidate by blue/black ball-point pen)							
Roll No.								21
Serial No.	of OMR A	nswer Sheet	************		•			
		*****************			····	(S	ignature e	f Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom, Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding rose of the Answer Sheet, by pen us mentioned in the guidelines given on the
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Samuelation Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as

Total No. of Printed Pages: 32 [उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण पृष्ठ पर दिये गए हैं।]

ROUGH WORK एक कार्य

No. of Questions: 120

Tin	ne : 2	Hours		Full Marks: 360						
Not	te : (1	(Three) marks. One ma	rk will be	u can. Each question carries 3 deducted for each incorrect arded for each unattempted						
	(2)	If more than one alternathe correct answer, choose		vers seem to be approximate to osest one.						
01.				es move a region of higher to spread uniformity is called						
	(1)	Osmosis	(2)	Diffusion						
	(3)	Transportation	(4)	Conduction						
02.		The force with which the surface molecules of a liquid are held together is called:								
	(1)	Tensile strength	(2)	Power						
	(3)	Cohesive	(4)	Surface tension						
03.	Chie	f cells secrete :								
	(1)	NaOH	(2)	HCI						
	(3)	NaHCO ₃	(4)	Enzymes						

14.	If a r	eaction is equ	illib	rium,	the fre	e en	ergy, A	G is equal	to:
	(1)	1	(2)	2		(3)	0	(4)	10
05.		h are the no				s res	ponsib	ole for the	high melting
			01	N CALCA		(0)	Vand	ier Waals fo	orce
		H-bonds			200	(2)		rostatic int	
	(3)	hydrophobic	fore	e		(4)	Flect	rostatic mu	eractions
06.	Whi	ch of the follo	wing	gisa	suicide	e enz	yme?		
	(1)	Glucokinase				(2)	LDH		
	(3)	Cyclooxyger	ase			(4)	GOT		
07.	Why	is red wine	part	icular	ly bene	eficia	1 ?		
	(1)	It contains v	itam	ins	V.:				
	(2)	It contains]	orop	er car	bohydi	rate			
	(3)	It contains	ntic	xidan	ıts				30
	(4)	It contains	orote	eins					
80				g is n	ot usei	ful in	identi	fying the a	mino-terminal
	resi	due of protei				9		*	
	(1)	Cyanogen 1							
	(2)	Dabsyl chlo	oride					10	
	(3)	Fluorodini	robe	enzen	е				
	(4)	Phenyl iso	thio	yana	te		46		
					,		88		

		100 180 10		5	(I)	Oa. Duxy	Ar Storb	P.T.O.
٠	(3)	Keto group			(4)		yl group	
	(1)	Hydroxyl grou	ıp.		(2)	Sulfhyd	ryl group	
	in its	s role as an ar	tioxic	lant?			. 1a	
12.	Whi	ch of the follow	ving i	s the impo	ortant	reactive	group of gl	utathione
		- P				\$0 @		
	(4)	Coenzyme =	holoe	nzyme	e est			25 26
	(3)	Apoenzyme :	holo	enzyme	*	***		
	(2)	Apoenzyme -	- coer	nzyme = 1	oloen	zyme	79	63
	(1)	Apoenzyme -	coen	zyme = h	oloen	zyme		
11.	Whi	ich of the follo	wing	is true?		70		
							35 32	
	(3)	Force			(4)	Torque	•	
	(1)	Friction	8		(2)	Viscos	ity	
	and	other layer is c	alled	:				\$8
10.	The	resistance e	xperie	ence by o	ne lay	yer of a	liquid in m	oving over
	(1)	His	(2)	Asp	(3)	Ile	(4)	Arg
	the	inside of a wa	ater-s	oluble pro	tein ?	· ·		
U9.	wn	ich of the foll	owing	amino a	cid re	sidues i	s likely to b	e found on

13.	Whic	h of the follo	wing is	s not	a die	tary	antioxidant?
	{1}	Vitamin C			37	(2)	Vitamin E
	(3)	Vitamin K	s			(4)	β-Carotene
14.							nino acid is 110, the molecular
	weig	ght of a peptio	le mad	le up	of 10	ami	no acids is expected to be:
	(1)	1100				(2)	744
	(3)	938				(4)	876
15.	Hov	w many molec	ules o	f Vite	min	A are	formed from one Molecule of
	βС	arotene ?					25
	(1)	1	(2)	2		(3)	3 (4) 4
16	, ln	photosynthes	is and	i cell	ular	respi	ration processes, the catalyst
	Су	tochrome Oxi	dase u	tilize	s:		50
	(1)	Cu	(2)	Fe		(3)	Cu and Fe (4) Ni
17	. W	no gave the n	ame "N	luclei	c Aci	ď"	
	(1)					(2)) Franklin
	(3) Watson				(4) Crick
		w.			,	6	

18.	The	e offsprings obta	in how much	gene	s from father?		
	(1)	25% (2	2) 75%	(3)	50%	(4)	100%
19.	A c	hild with IQ 140	belongs to w	hich	category ?		
	(1)	Genius		(2)	Superior		
	(3)	Most superior		(4)	Average		
20.	In v	which era life wa	s evolved ?			95	
	(1)	Precabrian Era	C 27	(2)	Mesozoic Era		66
	. (3)	Coenozioc ear	- F	(4)	Palaeozoin era	ı	(845) En
21.	A. sı	ecific characteri	istic of class i	nsect	s is :		
	(1)	Two pairs of leg	gs '	*	12		
	(2)	Three pairs of l	egs				
	(3)	Four pairs of le	gs				
	(4)	Five pairs of leg	gs'.				
22.	Slee	ping sickness oc	curs due to :				
	(1)	Ugléna	37,0	(2)	Plásmodium		
	(3)	Trypanosoma		(4)	Protozoa		
			10				

23.	Silve	erfish is:		
	(1)	Insect	(2)	Fish
	(3)	Crustacean	(4)	Bird
24.	Hyd	ra moves with fast speed by:		
	(1)	Looping	(2)	Walking on foot
	(3)	Creeping	(4)	Somar salting
25.	On	which segment of the body	, the	e carthworm possesses male
	rep	roductory organ ?		
	(1)	Segment 10	(2)	Segment 19
	(3)	Segment 20	. (4)	Segment 21
26.	. Ter	ndons connect :		
	(1)	Bone to bone	(2)	Bone to muscle
	(3)	Muscle to muscle	(4)	Skin to muscle
27	. W	hich of the following is not an	enzy	me?
	(1)	Maltasc	(2)	Amylose
	(3)	Trypsin	(4) Lipase

48.	Mos	st of the mem	bers (or vitamin	e con	apiex are p	rimarily	used as	
	(1)	Hormones			(2)	Enzymes		*6	
	(3)	Co-enzymes	ľ		(4)	Digestive	elemen	ts ,	ė
29.	Chl	oride shift in	blood	l in essenti	al for	the transp	ort of w	nich gas	?
51	(1)	,O ₂	(2)	N ₂	(3)	CO2	(4)	co .	
3Q .	Tric	ruspid valve e	xists	between:		p 960		*	
	(1)	Right aurici	e and	ventricle					
	(2)	Both auricle	8		9.	52			
	(3)	Both ventric	les						
	(4)	Left auricle	and v	entricle				¥	
31,	Hap	itens are :	٠						
	(1)	Small molec	ules	g.					
	(2)	Large molec	ulca	ăi .					
	(3)	Medium alze	mok	ecules ,		31			
	(4)	Inclusion bo	dies	15 13				R	
		8				t) De			

32.	How	much protei	n is t	here in	HDI	7.5				
	(1)	10%	(2)	20%	33	(3)	50%	(4)	35%	
33.	The	letters used	to de	note try	ptop	han	and lysine a	re:		
	(1)	W,K	(2)	R,W		(3)	L,K	(4)	K,S	
34.	Dea	mination of c	ytosir	e leads	to:					
	(1)	Thimine				(2)	Uracil	%.		
	(3)	Guanine				(4)	Adenine		8	,
35.	Mor	e than one co	don c	an spec	ify t	he sa	ıme amino a	cid. thi	s is called	1:
	(1)	Degeneracy	N /			(2)	Regeneracy	7		
	(3)	continuity	984	D		(4)	Universality	У		
36.	If th	ne cytosine c	onter	nt of a	dup	lex is	20% of the	total	bases, th	ne
	ade	nine content	would	d be:						
	(1)	10%	(2)	30%		(3)	40%	(4)	60%	
37.	Whi	ch of the im	muno	globulir	as ci	rosse	s the placen	ts and	reaches	to
	fetu	ıs is ?								
	(1)	lgA	(2)	IgM		(3)	IgG	(4)	IgE	
							2			

38.	Ligh	t reactions take place in :		
	(1)	Stroma	(2)	Grana
	(3)	Endoplasmic reticulum	(4)	Golgi body
39.	In c	ell cycle, the per-DNA synther	is ph	ase is termed as :
	(1)	G2 phase	(2)	S phase
	(3)	G1 phase	(4)	M phase
		*:		*
40.	Cro	ssing over takes place in which	h sta	ge ?
	(1)	Pachytene	(2)	Zygotene
	(3)	Leptotene	(4)	Diplotene
41.	The	mixture of H, and CO is an ir	ndust	rial fuel known as :
	(1)	Fuel gas	(2)	Water gas
	(3)	Industrial gas	(4)	Vapour
42.	On	spot treatment of environmen	t poli	utant is known as :
	(1)	In situ	(2)	Ex situ
	(3)	Local	(4)	Tanaported

43.	End	orphin is a :		(9						
	(1)	Lipid	(2)	Protein						
	(3)	Carbohydrate	(4)	Nucleic acid						
44.	The	loss or addition of one or mor	e chr	omosomes is known as :						
	(1)	Polyploidy	(2)	Aneuploidy						
	(3)	Euploidy	(4)	Aploidy						
45.	Who	Who said, "Ontogeny recapitulates ontogeny"?								
	(1)	Robert Hook	(2)	Haeckel						
	(3)	Baltimore	(4)	Crick						
46.	The	science of improving human s	tock	is known as :						
	(1)	Genetics	(2)	Biology						
	(3)	Eugenics	(4)	Animal science						
47.	Ade	novirus contains :								
	(1)	Double stranded DNA, none	nvelo	ped						
	(2)	Double Stranded DNA, envel	oped							
	(3)	Double Stranded RNA, none	nvelo	pped						
	(4)	Single stranded RNA, envelo	ped							

48.	Any gene that is placed into a plasmid is called: (1) Small plasmid (2) DNA (3) Insert (4) Trans gene A single stranded DNA/RNA molecule used to detect the presence of a complementary nucleic acid is called: (1) Sensor (2) Probe (3) Insert (4) Detector Oxidative stress is caused due to: (1) Production of excessive free radicals (2) Production of excessive HCl in stomach (3) Indigestion (4) Low BMR Adjuvants are the agents that: (1) Decrease immunogenicity of an antigen								
	(1)	Small plasmid	(2)	DNA					
	(3)	Insert	(4)	Trans gene					
49.		Me #1 07 03		95	of				
	(1)	Sensor	(2)	Probe	***				
	(3)	Insert	(4)	Detector					
50.	Oxio	dative stress is caused due to :		68					
	(I)	Production of excessive free r	adica	als					
	(2)	Production of excessive HCl i	n sto	omach					
	(3)	Indigestion		•					
	(4)	Low BMR							
51.	Adju	wants are the agents that :		46					
	(1)	Decrease immunogenicity of	an a	ntigen					
	(2)	Increase immunogenicity of a	n an	ntigen					
	(3)	Decrease immunity							
	(4)	Increase immunity		*. @					
				64					

52.	Con	tining the enzyme molecules to	oad	istinct phase is known as :
	(1)	Immobilisation	(2)	Purification
	(3)	Adsorption	(4)	Absorption
53.	An a	nalytical device which employs	s a bi	ological material to specifically
	inte	ract with an analyt e and meas	ures	the generated electrical signal
	by t	ransducer is called as :	163	
	(1)	Electrometer	(2)	Biosensor
	(3)	Conductor	(4)	Amplifier
54.	The	disease of tomato is caused by	y :	
	(1)	Alternaria solani		
	(2)	Fusarium oxysporium		
	(3)	Helminthosporium sativum		(40)
	(4)	Erysiphe polygoni		
55.	"Ca	ryopasis" is the fruit in memb	er of	the family:
	(1)	Fabaceae	(2)	Asteraceae
	(3)	Poaceae	(4)	Abiaceae
		w i		

56.	Wh	ich of the f	ollow	ing	antibio	otic	inhibits th	e trai	nslation	ı in
	euk	aryotes ?								
	(1)	Tetracyclin			ė	(2)-	Puromycin			
	(3)	Penicillin			27	(4)	Chloromyo	etin		
57.	Poly	merase chai	n read	ction	was de	veloj	sed by:			
	(1)	Watson and	Cric	k .	8		8			
	(2)	Har Govind	Khor	ana	\$*\$					
	(3)	Albert Smit	h							
	(4)	Kary Mulis		•1						
58.	The	first immun	globi	ulin s	ynthes	ized	by the fetus	is:		
	(1)	IgA	(2)	IgG		(3)	IgM	(4)	IgE	
59 .	Whe	n atoms or i	ons a	re mis	sed or	mis	placed in a c	rystal,	the defe	ects
	are	called as.		2	ir.	70				15
	(1)	Surface defe	ect			(2)	Point defec	t		
	(3)	Unit cell def	ect			(4)	Displaceme	ent		
							31			
					15		1.07		P.T	.0.

00.	me	molarity of a	2501	mi solution	conta	uning U. 1 mole	e of N	aOH would
	be:							
	(1)	0.1	(2)	0.2	(3)	0.3	(4)	0.4
61.	Afte	r dissolution	of iod	line in a sol	ution	, the entropy	:	
	(1)	Increases				51		
	(2)	Decreases						
	(3)	First increas	es an	d then deci	rease	s		i i
	(4)	First decreas	ses ai	nd then inc	rease			
62.	The	order of reac	tion fo	or radioactiv	ze de	cay is:		ő
	(1)	First			(2)	Second		
	(3)	Third			(4)	Zero		
63.	Wha	at is produced	i whe	n ethanol v	apou	rs are passed	over	alumina at
	600	K ?						
	(1)	Ethane			(2)	Ethene		
	(3)	Acetylene			(4)	Methane		

64	. The	e metal o	xide which	n is know	m as ph	ilosophe	r's wool :	
	(1)	ZnO	(2)	CuO	. (3)	FeO	(4)	CGO
65	. Giv	e one ex	ample of s	ubstance	used in	n hair dy	re:	
	(1)	Amino	phenoi	\$3	(2)	Cyclon	ethicone	
	(3)	Butyle	ne glycol	*	(4)	Propyle	ne glycol	
66	. 1 m	ıM is equ	tal to:					
	(1)	1 mmo	le/mi	71	(2)	1μ mol	e/ml	
	(3)	1 pmol	e/ml	i ii	(4)	1 fmole	/ml	
67.	The	sum of	pKa and p	Kb is equ	al to :			
	(1)	12	(2)	14	(3)	10	(4)	7
68.	How	many d	lifferent st	creoisom	ers are j	possible	with an al	dohexose?
	(1)	4	(2)	8	(3)	12	(4)	16
69.	A Di	NA has 2	2:1×10 ⁵ mu d be :	cleotides	in its c	oding st	rand. The	number of
	(1)	7×104			(2)	6×10³		
	(3)	7×10³			- 1	4×10³	3	
				1.	,		13	97

P.T.O.

7 0.	In w	hich of the following compoun	ds C	-H bond length is minimum?
	(1)	Ethane	(2)	Ethene
	(3)	1,2-dichloroethene	(4)	1, 2-dichloroethane
71.	Free	ons are :		*
	(1)	Chloroflurocarbons	(2)	Aromatic molecules
700	(3)	Unsaturated fats	(4)	Carbohydrates
72.	Crys	ophytic algae grow on :		
	(1)	Rocks	(2)	Water
	(3)	Soil	(4)	Ice and snow
73.	An	animal which is unicellular, n	icros	scopic with no tissues is called
	as:	20		
	(1)	Metazoa	(2)	Protozoa
	(3)	Chordata	(4)	Virus
74	. The	e organism which contains bo	th th	e chloroplast and flagella is ?
	(1)	Paramecium	(2)	0.240.05.00.04.40.250
	(3)	Euglena	(4)	Trypanosoma
				25

75.	Wh	ich one is commonly known a	s Po	nd Silk'?	8
	(1)	Ulothrix	(2)	Spirogyra	
×.	(3)	Chara	(4)	Batrachospermum	2
76.	Litz	nus is a natural dye obtained	from	5	
	(1)	Algae	(2)	Fungi	
	(3)	Lichens	(4)	Corals	**
		9.3			
77.	Bor	deaux mixture consists of :			
	(1)	Lime and Calcium sulphate	(8)	3	
	(2)	Sulphur and lime		68	
	(3)	Copper sulphate and lime		8	
	(4)	Copper sulphate and sulphu	ır	10 mg	8
				**	
78.	The	nurse cells are present in the	spor	rogonium of:	
	(1)	Riccia	(2)	Marchantia	
	(3)	Angiosperms	(4)	Gymnosperms	
79.	Whi	ch of the following is classified	l as s	in eastern cycall ?	36
	(1)	Dioon	(2)	Stangeria	
	(3)	Ceratozamia	(4)	Zamia	
		•			
		19		P.T.	0.

80.	Whi	ch of the follow	ving	cells are pi	resen	t only in sponges	3	
	(1)	Erythrocytes			(2)	Blastocytes		
	(3)	Neurons			(4)	Funnel Cells		
81.	Whi	ch of the follow	wing	is called T	he La	intern of Aristotle	' ?	
	(1)	Star fish			(2)	Sea Anemon		
	(3)	Sea Archin		29	(4)	Hydra		
82.	Hip	notoxin' is fou	ınd ir	ı:				
	(1)	Nematocysts			(2)	Sponges		
	(3)	Ascaris			(4)	Protozoans		
83.	The	common feati	are of	rennin, ar	nylas	e and trypsin is th	at	they are:
	(1)	Proteins			(2)	Vitamins		
	(3)	Nucleic acids	3		(4)	Carbohydrates		
84.	The	vitamin need	ed for	r maturatio	on of	erythrocytes is :		
	(1)	c .	(2)	B_{12}	(3)	D (4)	K
85.	Ligh	nt reaction in	phote	osynthesis	prod	uces:		
	(1)	Oxidising er	ıtity		(2)	Reducing entity	7	
	(3)	CO2			(4)	Glucose		

86.	Ru	DP carboxylase can utilise	following	g as a substrate :
	(1)	CO ₂ .	(2)	0,
	(3)	O, and CO,	(4)	Water
87.	The	molecule which binds to	the activ	e site in an enzyme is called :
	(1)	Substrate	(2)	Activator
85	(3)	Inactivator	(4)	Non-competitive inhibitor
88.	The	genetic material of Simio	n Virus 4	0 (SV40) is :
	(1)	DNA	(2)	RNA
	(3)	RNA-DNA hybrid	(4)	Peptidonucleic acid
89.	The	fibronectin is a :		
	(1)	Nucleoprotein	(2)	Glycoprotein
	(3)	Lipoprotein	(4)	Phosphoprotein
90.	The	red pigment found in the	ripe tome	itoes are called :
	(1)		(2)	Leukoplast
	(3)	Chloroplast	, (4)	Carotene
		6 8		38 24

91.	Repl	ication takes place in :		33
	(1)	Cytoplasm	(2)	Nucleus
	(3)	Golgi body	(4)	Endoplasmic reticulum
		75 32 37	a 6	Lorent Loren
92.	The	transcription in prokaryote	es is cata	alyzed by:
	(1)	RNA polymerase I	(2)	DNA polymerase II
	(3)	RNA polymerase II	(4)	DNA polymerase III
93.	Nuc	eleoli are rich in :		
	(1)	RNA	(2)	Carbohydrates
	(3)	DNA	(4)	Fatty acids
94.	EF6	G factor is also called as:		
	(1)	Aminoacyltransferase	(2)	Oxidase
	(3)	Hydrolase	(4)	Thanslocase
95	. Lac	o Operon is :		
	(1)	Inducible-repressible sys	stem	
	(2)	Repressible system		# £
	(3)	Inducible system		
	(4)	Sluggish system		

25		· .	3	
	(3)	Myoglobin	(4)	Leghemeglobin
	(1)	N ₂	(2)	Hemoglobin
100.	Nitro	ogenase is protected from	O ₂ by:	
1 0	(3)	Aminoglycoside	(4)	Spirolactone
	(1)	Polyene	(2)	Peptide
99.	The	chemical nature of penici	llin is :	额
	(3)	Malaria	. (4)	Cancer
	(1)	Filariasis	(2)	Ascariasis
98.	Art	emisin, a plant product, is	used ag	ainst:
	(3)	Antocyanin	(4)	Benzoquinone
	(1)	Menthol	(2)	Morphine
97.	Wh	nich one from the following	; is an al	kaloid ?
	(4)	Short lived	534	** **
	(3)	Unable to undergo mate	aration	835 20
	(2)	Unable to undergo meio	sis	***************************************
	(1)			
96	. Po	lytene cells are destined to	o die bec	ause they are :

- (1) Tandemly repeated sequences
- (2) Unique sequences of DNA
- (3) Minichromosomes
- (4) Interspersed repeated sequences

102. Protein transport into mitrochondria takes place :

- (1) Co-translationally
- (2) Post-translationally
- (3) Via peroxisomes
- (4) Through ER-Golgi pathway

103. Collagen is rich in :

(1) Histidine

(2) Hydroxyproline

(3) Tryptophan

(4) Alanine

104. Measles is caused by :

(1) Bacteria

(2) Puccinia virus

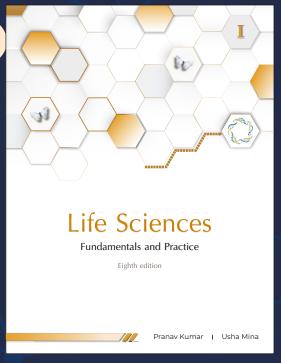
(3) Rubeola virus

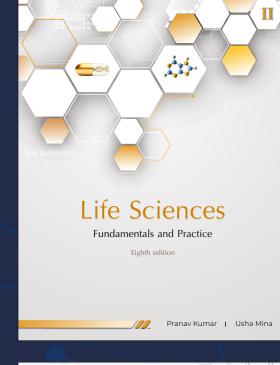
(4) Fungi

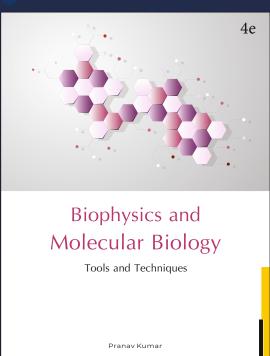
105.	Wha	at would be a likely explanation for the existence of
	pseu	idogenes ?
	(1)	Gene duplication
	(2)	Gene duplication and mutation events
	(3)	Evolutionary pressure
	(4)	Unequal crossing over
10 6 .	Whic	ch of the following modification leads to protein degradation?
	(1)	Acetylation (2) Phosphorylation
	(3)	Uniquitination (4) Methylation
107.	Duri	ing mismatch repair in E. coli, the parental strand is recognized
	by:	
	(1)	single stranded breaks
	(2)	glycosylated adenines
	(3)	double stranded breaks
	(4)	methylated adenines

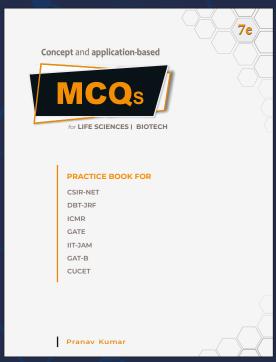
108. Which of the following is a role of gRNA?

	(1)	Self splicing						
	(2)	Polyadenylation						
	(3)	RNA splicing						
	(4)	Chemical modification of rRNA						
109. Most protection against viral disease in the body takes place through								
the activities of :								
	(1)	Interferon molecules						
	(2)	penicillin molecules						
	(3)	antigen molecules						
	(4)	Antibody molecules						
110. Skin cancer is induced by which type of DNA damage caused by								
		osure to harmful UV rays in st						
	(1)	Depurination	(2)	Deamination				
	(3)	Pyrimidine dimer formation	(4)	Alkylation				
111. Cesium (Cs) belongs to:								
	(1)	s1-block	(2)	s2-block				
	(3)	p2-block	(4)	p5-block				
26								


112.	One	of the following reaction inte	rmęd	iates does not have a planar		
		cture:				
	(1)	Alkyl carbocation	(2)	Alkyl carbanion		
	(3)	Alkyl free redical	(4)	Singlet Carbene		
113. In global warming the dangerous gas next to CO ₂ is:						
	(1)	CH ₄	(2)	SO ₂		
	(3)	NO ₂	(4)	Water vapour		
114.The master brake of the cell cycle is :						
	(1)	Cyclin proteins	(2)	p21		
	(3)	Rb protein	(4)	p 7.		
			41 4			
115. Monopolin is a :						
SQ.	(1)	Complex carbohydrate	ą°,	a.c.		
	(2)	2) Mitosis specific protein complex				
	(3)	Lipid				
	(4)	Meiosis specific protein comp	olex			
		105				


116. Which of the following enzymes is responsible for the transfer of amino						
	groups from an amino acid to an alpha keto acid?					
	(1)	Transaminase	(2)	Transketolase		
8.	(3)	Deaminase	(4)	Lyase		
117. Germ-line cells give rise to :						
	(1)	Eggs	(2)	Sperms		
	(3)	Eggs or sperms	(4)	Somatic cells		
118. Which of the following is most stable ecosystem?						
	(1)	Forest	(2)	Grass land		
	(3)	Ocean	(4)	Desert		
119. Maximum biodiversity occurs at :						
	(1)	Poles	(2)	Equator		
	(3)	Temperate	(4)	Tropics		


120. The innate immune systems include:


- (1) Macrophages, neutrophils and dendrites
- (2) Macrophages, neutrophils and RBCs
- (3) RBCs, Chief cells and dendrites
- (4) Master cells, β-cells and dendrites

MSc Entrance Exam Combo Set

Biotechnology & Life Sciences

https://www.amazon.in/Pathfinder-Academy-Biotechnology-Sciences-Entrance/dp/8190642766

https://www.flipkart.com/pathfinder-academy-m-sc-biotechnology-life-sciences-entrance-exam-combo-set/p/itmegchtfm9nkytk?

Pathfinder Academy

pathfinderacademy.in | 9818063394

ROUGH WORK एफ कार्य

ROUGH WORK एक कार्य

31

P.T.O.

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-यत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा।
 केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अमुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गावा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में ड्यरिलेखन की अनुमित नहीं है।
- उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कहा निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये यृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिए केक्ल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अधित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिवें गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ एम आर उत्तर-एत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।