| Y L C

BT: BIOTECHNOLOGY

Duration: Three Hours Maximum Marks: 100

Read the following instructions carefully.

- This question paper contains 16 pages including blank pages for rough work. Please check all pages and report discrepancy, if any.
- 2. Write your registration number, your name and name of the examination centre at the specified locations on the right half of the Optical Response Sheet (ORS).
- 3. Using HB pencil, darken the appropriate bubble under each digit of your registration number and the letters corresponding to your paper code.
- 4. All questions in this paper are of objective type.
- 5. Questions must be answered on the ORS by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number on the left hand side of the ORS. For each question darken the bubble of the correct answer. In case you wish to change an answer, erase the old answer completely. More than one answer bubbled against a question will be treated as an incorrect response.
- 6. There are a total of 65 questions carrying 100 marks.
- Questions Q.1 Q.25 will carry 1-mark each, and questions Q.26 Q.55 will carry 2-marks each.
- 8. Questions Q.48 Q.51 (2 pairs) are common data questions and question pairs (Q.52, Q.53) and (Q.54, Q.55) are linked answer questions. The answer to the second question of the linked answer questions depends on the answer to the first question of the pair. If the first question in the linked pair is wrongly answered or is un-attempted, then the answer to the second question in the pair will not be evaluated.
- 9. Questions Q.56 Q.65 belong to General Aptitude (GA). Questions Q.56 Q.60 will carry 1-mark each, and questions Q.61 Q.65 will carry 2-marks each. The GA questions will begin on a fresh page starting from page 11.
- Un-attempted questions will carry zero marks.
- 11. Wrong answers will carry NEGATIVE marks. For Q.1 Q.25 and Q.56 Q.60, % mark will be deducted for each wrong answer. For Q.26 Q.51 and Q.61 Q.65, % mark will be deducted for each wrong answer. The question pairs (Q.52, Q.53), and (Q.54, Q.55) are questions with linked answers. There will be negative marks only for wrong answer to the first question of the linked answer question pair i.e. for Q.52 and Q.54. % mark will be deducted for each wrong answer. There is no negative marking for Q.53 and Q.55.
- 12. Calculator (without data connectivity) is allowed in the examination hall.
- 13. Charts, graph sheets or tables are NOT allowed in the examination half.
- 14. Rough work can be done on the question paper itself. Additionally, blank pages are provided at the end of the question paper for rough work.

HT.

Q.1 - Q.25 carry one mark each.

Q.1	Hybri	idoma technology is used to produce						
	(A) (C)	monoclonal antibodies both monoclonal and polyclonal antibodies	(B) (D)	polyclonal antibodies B cells				
Q.2	Ames	test is used to determine						
	(A) (C)	the mutagenicity of a chemical both mutagenicity and carcinogenicity of a chemical	(B) (D)	carcinogenicity of a chemical toxicity of a chemical				
Q.3	The bacteria known to be naturally competent for transformation of DNA is							
	(A)	Escherichia coli	(B)	Bacillus subtilis				
	(C)	Mycobacterium tuberculosis	(D)	Yersinia pestis				
Q.4	Antib	iotic resistance marker that CANNOT I	be used in	a cloning vector in Gram negative bacteria is				
	(A)	Streptomycin	(B)	Ampicillin				
	(C)	Vancomycin	(D)	Kanamycin				
Q.5		am used for essentially local similarity						
Ų,D	_	BLAST		RasMol				
	(A) (C)	ExPASY	(B) (D)	SWISS-PROT				
Q.6		dyl transferase activity resides in						
Q.0	_		(D)	225 -DN 4				
	(A) (C)	16S rRNA 5S rRNA	(B) (D)	23S rRNA 28S rRNA				
Q.7								
4. ,	In transgenics, alterations in the sequence of nucleotide in genes are due to P. Substitution							
	Q.	Deletion						
	R.	Insertion						
	S.	Rearrangement						
	(A)	P and Q	(B)	P, Q and R				
	(C)	Q and R	(D)	R and S				
Q.8	During	g transcription						
	(A)	DNA Gyrase introduces negative supercoils and DNA Topoisomerase I removes negative supercoils	(B)	DNA Topoisomerase 1 introduces negative supercoils and DNA Gyrase removes negative supercoils				
	(C)	both DNA Gyrase and DNA Topoisomearse I introduce negative supercoils	(D)	both DNA Gyrase and DNA Topoisomearse 1 remove negative supercoils				
Q.9	Unde	r stress conditions bacteria accumulate						
	(A)	ppGpp (Guanosine tetraphosphate)	(B)	pppGpp (Guanosine pentaphosphate)				
	(C)	both ppGpp and pppGpp	(D)	either ppGpp or pppGpp				
BT		N. 18		كان				

https://pathfinderacademy.in/

Q.10	An exa	imple for template independent DNA po	lymerase	t is
	(A) (C)	DNA Polymerase I Terminal deoxynucleotidyl transferase	(B) (D)	RNA polymerase DNA polymerase III
Q.11	Which	one of the following DOES NOT belon	g to the	domain of Bacteria?
	(A) (C)	Cyanobacteria Bacteroids	(B) (D)	Proteobacteria Methanobacterium
Q .12	Interfe	ron-β is produced by		
	(A) (C)	bacteria infected cells both virus and bacteria infected cells	(B) (D)	virus infected cells fungi infected cells
Q.13		are of bacteria is infected with bacteriop cell infected with 3 phages is	hage at a	multiplicity of 0.3. The probability of a
	(A)	0.9	(B)	0.27
	(C)	0.009	(D)	0.027
Q.14	A neor	natally thymectomized mouse, immunize	d with p	rotein antigen shows
	(A)	both primary and secondary	(B)	only primary response to the antigen
	(C)	responses to the antigen delayed type hypersensitive reactions	(D)	no response to the antigen
Q.15	Lymph	ocytes interact with foreign antigens in		
	(A)	Вопе тактом	(B)	Peripheral blood
	(C)	Thymus	(D)	Lymph nodes
Q.16	Somati	ic cell gene transfer is used for		
	P. 11	ransgenic animal production		
		ransgenic diploid cell production		
		n-vitro fertilization		
	S. c	lassical breeding of farm animals		
	(A)	P, R and S	(B)	P. Q and R
	(C)	P and R	(D)	Ponly
Q.17	Access	sion number is a unique identification as	signed to	o a
	(A)	single database entry for DNA/Protein	(B)	single database entry for DNA only
	(C)	single database entry for Protein only	(D)	multiple database entry for DNA/Protein
Q.18	Expres	sed Sequence Tag is defined as		
	(A)	a partial sequence of a codon randomly selected from cDNA library	(B)	the characteristic gene expressed in the cell
	(C)	the protein coding DNA sequence of a gene	(D)	uncharacterized fragment of DNA presence in the cell

111

VIA

Q.19	than maximum growth rate by								
	(A) (C)	partial pH cyc	cell recycling ling	(B) (D)	using sub-optimal temperature substrate feed rate cycling				
Q.20	During factic acid fermentation, net yield of ATP and NADH per mole of glucose is								
	(A) (C)		and 2 NADH and 2 NADH	(B) (D)	2 ATP and 0 NADH 4 ATP and 0 NADH				
Q.21	Identi	ify the ena	syme that catalyzes the follo	wing reaction	òn				
	α-Ketoglutarate + NADH + NH ₄ * + H* Glutamate + NAD* + H ₂ O								
	(A)		ate synthetase	(B)	Glutamate oxoglutarate aminotransferase				
	(C)	Glulam	ate dehydrogenase	(D)	α-ketoglutarate deaminase				
Q.22	The degree of inhibition for an enzyme catalyzed reaction at a particular inhibitor concentration is independent of initial substrate concentration. The inhibition follows								
	(A)	compet	itive inhibition	(B)	mixed inhibition				
	(C)	un-com	petitive inhibition	(D)	non-competitive inhibition				
Q.23	Oxidation reduction reactions with positive standard redox potential (ΔE^0) have								
	(A)	positiv	• AG ⁰	(B)	negative ΔG ⁰				
	(C)	positive		(D)	negative ΔE*				
Q.24	Nuclease-hypersensitive sites in the chromosomes are sites that appear to be								
	(A)	H2 and	H4 histone free	(B)	HI and H2 histone free				
	(C)		H4 histone free	(D)	Nucleosome free				
Q.25	The f	ormation	of peptide cross-links betwo	en adjacent	glycan chains in cell wall synthesis is called				
	(A)	Transg	lycosylation	(B)	Autoglycosylation				
	(C)	Autope	ptidation	(D)	Transpeptidation				
Q.26 -	Q.55	carry t	wo marks each.						
Q.26				plants is	a two step process comprising of embryo				
	Reason:			iction requi	e presence of 2, 4-dichlorophenoxyacetic res a high concentration of 2, 4-				
	(A)) and (r) are true and (r) is the reason for (a)	ne (B)	both (a) and (r) are true and (r) is not the correct reason for (a)				
	(C)		ue but (r) is false	(D)	·				
ВТ									

Q.27	An immobilized enzyme being used in a continuous plug flow reactor exhibits an effectiveness
	factor (η) of 1.2. The value of η being greater than 1.0 could be apparently due to

(B)

- (A) substrate inhibited kinetics with
- external pore diffusion limitation
- internal pore diffusion limitation
- (C) sigmoidal kinetics

(D): unstability of the enzyme

Q.28 A roller bottle culture vessel perfectly cylindrical in shape having inner radius (r) = 10 cm and length (I) = 20 cm was fitted with a spiral film of length (L) = 30 cm and width (W) = 20 cm. If the film can support 10° anchorage dependent cells per cm², the increase in the surface area after fitting the spiral film and the additional number of cells that can be grown respectively are

- 1200 cm^2 and 12×10^7 cells (A)
- $600 \text{ cm}^2 \text{ and } 6 \times 10^7 \text{ cells}$ (B)
- (C) 600 cm² and 8300 cells
- (D) 1200 cm² and 8300 cells

Q.29 Determine the correctness or otherwise of the following Assertion (a) and the Reason (r)

Assertion:

MTT assay is used to determine cell viability based on the principle of colour

formation by DNA fragmentation.

Reason:

(C)

MTT assay is used to determine cell viability based on the colour development by converting tetrazolium soluble salt to insoluble salt.

- (A) both (a) and (r) are true and (r) is the
- (B) both (a) and (r) are true and (r) is not the correct reason for (a)
- correct reason for (a) (a) is true but (r) is false
- (D) (a) is false but (r) is true

Q.30 Match the following antibiotics in Group I with their mode of action in Group II

Group I

Group II

- P. Chloramphenicol
- 1. Binds to DNA gyrase
- Q. Norfloxacin
- 2. Binds to RNA Polymerase
- R. Puromycin S. Rifampicin
- 3. Inhibits peptidyl transferase Mimics aminoacyl-tRNA
- (A) P-1, Q-3, R-2, S-4

P-3, Q-1, R-2, S-4 (B)

(C) P-3, Q-1, R-4, S-2 (D) P-4, Q-2, R-3, S-1

Q.31 Match the chemicals in Group I with the possible type/class in Group II

Group I

Group [[

- P. Picloram

1. Vitamin

O. Zeatin

2. Auxin

R. Thiamine

Amino Acid.

S. Glutamine

Cytokinin

 (\mathbf{A}) P-2, Q-4, R-1, S-3

- **(B)**
- P-4, Q-1, R-2, S-3

(C) P-3, Q-1, R-2, S-4 (D) P-4, Q-2, R-1, S-3

ΒT

Q.32 Match Group I with Group II

-		•		
		Group I	•	Group 11
		P. Fibronectin Q. Insulin R. α-Macroglobulin S. Transferrin	2. 3.	Uptake of amino acids and glucose Trypsin inhibitor Binds iron Cell attachment to substratum
	(A) (C)		(B) (D)	P-3, Q-2, R-1, S-4 P-4, Q-1, R-2, S-3
Q.33	Match	the promoters listed in Group 1 with the	tissues	listed in Group II
		Group 1		Group 11
		P. α-Amylase Q. Glutenin R. Phaseotlin S. Patatin	:	1. Endosperm 2. Tuber 3. Aleurone 4. Cotyledon
	(A) (C)	7	(B) (D)	P-3, Q-4, R-1, S-2 P-1, Q-3, R-2, S-4
Q.34	L T4 I	der the following statements, DNA ligase can catalyze blunt end ligation e ligation efficiency of T4 DNA ligase car		
	(A) (C)	•	(B) (D)	both I and II are true I is true and II is false
Q.35	The It	imover numbers for the enzymes, El and	E2 are	150 s ⁻¹ and 15 s ⁻¹ respectively. This means
	(A)	E1 binds to its substrate with higher affinity than E2		The velocity of reactions catalyzed by E1 and E2 at their respective saturating substrate concentrations could be equal, if concentration of E2 used is 10 times that of E1
	(C)	The velocity of E1 catalyzed reaction is always greater than that of E2		The velocity of E1 catalyzed reaction at a particular enzyme concentration and saturating substrate concentration is lower than that of E2 catalyzed reaction under the same conditions
Q.36	Match	the items in Group I with Group II		
		Group I (Vectors)		Group II (Maximum DNA packaging)
	1	P. A phage Q. Bacterial Artificial Chromosomes (ER. PI derived Artificial Chromosomes λ cosmid	-	1. 35-45 kb 2. 100-300 kb 3. ≤ 300 kb 4. 5 = 25 kb

ВŦ

(A)

(C)

P-3, Q-4, R-1, S-2

P-4, Q-3, R-2, S-1

WIG

P-1, Q-3, R-2, S-4

P-1, Q-2, R-3, S-4

(B)

(D)

Q.37	.57 Match Group I with Group II					
		Group I		<u>Grou</u>	<u>p 11</u>	
		P. Staphylococcus aureus		1. Bio	films	
		Q. Candida albicans			teriocins	
		R. Mycobacterium tuberc	ulosis	_	thicillin resistance	
		S. Lactobacillus lactis		4. Isos	niazid	
	(A)	P-1, Q-4, R-2, S-3		(B)	P-2, Q-3, R-1, S-4	
	(C)	P-3, Q-1, R-4, S-2		(D)	P-1, Q-2, R-4, S-3	
Q.38	A mu	tant Ga protein with increase	d GTPase act	tivity w	ould	
	(A)	not bind to GTP		(B)	not bind to GDP	
	(C)	show increased signaling		(D)	show decreased signaling	
	` '					
Q.39	Dizyg twins	otic twins are connected to a	single place	nta duri	ing their embryonic development. These	
	(A)	have identical MHC haple	Aypes	(B)	have identical TH cells	
	(C)	have identical T cells	**	(D)	can accept grafts from each other	
	ζ-,			,	(both (A) and (B))	
O 40	TL. 1		Canad bindi	- a to th	e receptor is 10 ⁻⁷ M. The concentration of	
Ų.40	ligano	required for occupying 109	b of receptors	s is	R leceptor is to the true concentration of	
	(A)	10 ⁻⁶ M		(B)	10 ⁻⁷ M	
	(C)	10 M		(D)	10.8M	
	(C)	to M		(1)	10 14	
Q.41	.41 Receptor R is over expressed in CHO cells and analysed for expression. 6 × 10 ⁷ cells incubated with its radioactive ligand (specific activity 100 counts per picomole). If the total c present in cell pellet was 1000 cpm, the average number of receptors R per cell is (assume con saturation of receptors with ligand and one ligand binds to one receptor)					
	143	2014		(D)	In ³	

- (A) 10°
- Q.42 A cell has five molecules of a rare mRNA. Each cell contains 4×10^5 mRNA molecules. How many clones one will need to screen to have 99% probability of finding at least one recombinant cDNA of the rare mRNA, after making cDNA library from such cell?

(D)

 4.50×10^{5} (A)

10,

(C)

 3.50×10^{5} (B)

 10^7

 4.20×10^{5} (C)

 4.05×10^5 (D)

Q.43 Match the products in Group I with the microbial cultures in Group II used for their industrial production

	_					
		Group I		Group II		
		P. Gluconic a	cid	1. Leuconostac mesenteroids		
		Q. L – Lysine			pergillus niger	
		R. Dextran		3. Bre	vibacterium flavum	
		S. Cellulase		4. <i>Tri</i>	choderma reesei	
	(A)	P-2, Q-1, R-3,		(B)	P-1, Q-3, R-4, S-2	
	(C)	P-2, Q-3, R-1,	S-4	(D)	P-3, Q-2, R-4, S-1	
0.44	Determ	nine the corrects	nece of otherwise of the	fallausin	g Assertion (a) and the Reason	. (.)
Q,11	Assert	ion: Cyton	lasmic male sterility (i ei (em: ntworiot	ig Assertion (a) and the Reason invariably due to defect(s) in a	l (f) nitochondeial
	120042	functi	on.	.1113) 13 1	invariably due to defect(s) (ii i	miocnominal
	Reaso		an be overcome by polli a non cms plant.	nating a	fertility restoring (Rf) plant wit	h pollen
	(A)	both (a) and (c) are true and (r) is the	(B)	both (a) and (r) are true and (r) is and the
	(/	correct reason		(1)	correct reason for (a)) is not the
	(C)	(a) is false but	(r) is true	(D)	(a) is true but (r) is false	
Q.43	concen	tration in the fe	rmentation medium is	10° cells	of follows first order kinetics. If the follows first order kinetics.	ontamination
	deactiv	ation rate const	ant = 0.23 / min) to ach	eve acce	eptable load?	20 (therman
	(A)	48 min		(B)	11 min	
	(C)	110 min		(D)	20 min	
Q.46	short w	ings and tan bo	$\mathbf{x}\mathbf{d}\mathbf{y}$ $Drosophila$. The \mathbf{F} 1	progen	dark bodies were mated with was observed to be with curv	ed wings and
	tan boo	dy. The F 1 p.	rogeny was again allo-	wed to	breed and produced flies of t	he following
	buenot.	ype, 45 curved wings dark bod	wings can body, 15 sho	ort wings	stan body, 16 curved wings da	rk body and,
	O BIIOIC	wings cat k too	y.			
	The mo	de of inheritant	ce is			
	(A)	Typical Mende	elian with curved	(B)	Typical non-Mendelian with c	urved wings
	` ,		body being dominant	(-)	and tan body not following any	
	(C)		h suppression of	(D)	Mendelian with single crossov	
		phenotypes				
Q.47	Match (Group I with G	Group II			
•		Group I		Group	ı il	
	P. Real Time-PCR			1. Bio		
		Q. 2-D Electro			er Green	
		R. Affinity ch		_	ibody linked sephrose beads	
		S. Microarray		4. Am	pholytes	
		-				
	(A)	P-1, Q-2, R-4,		(B)	P-2. Q-3. R-4. S-1	
	(C)	P-2, Q-4, R-3,	5-1	(D)	P-3. Q-2, R-1, \$-4	

ÐТ

Common Data Questions

Common Data for Questions 48 and 49:

A culture of *Rhizobium* is grown in a chemostat (100 m³ bioreactor). The feed contains 12 g / L sucrose, K, for the organism is 0.2 g / L and $\mu_m = 0.3$ h⁻¹.

- Q.48 The flow rate required to result in steady state concentration of sucrose as 1.5 g/L in the bioreactor will be
 - (A) $15 \text{ m}^3 \text{ h}^{-1}$

(B) $26 \text{ m}^3 \text{ h}^{-1}$

(C) $2.6 \text{ m}^3 \text{ h}^{-1}$

- (D) 150 m³ h⁻¹
- Q.49 If $Y_{vs} = 0.4 \text{ g/g}$ for the above culture and steady state cell concentration in the bioreactor is 4 g/L the resulting substrate concentration will be
 - (A) 2g/L

(B) 8 g/L

(C) 4 g/L

(D) 6 g/L

Common Data for Questions 50 and 51:

The width of the lipid bilayer membrane is 30 Å. It is permeated by a protein which is a right handed α -helix.

- Q.50 The number of \alpha-helical turns permeating the membrane is
 - (A) 5.6 turns

(B) 3.5 turns

(C) 6.5 turns

- (D) 5.0 tums
- Q.51 The number of amino acid residues present in the protein is
 - (A) 15

(B) 18

(C) 17

(D) 20

Linked Answer Questions

Statement for Linked Answer Questions 52 and 53:

The standard redox potential values for two half-reactions are given below. The value for Faraday's constant is 96.48 kJ V⁻¹ mol⁻¹ and Gas constant R is 8.31 J K⁻¹ mol⁻¹.

NAD' + H' + 2e'
$$\leftrightarrow$$
 NADH - 0.315 V
FAD + 2H' + 2e' \leftrightarrow FADH₂ - 0.219 V

- Q.52 The ΔG^0 for the oxidation of NADH by FAD is
 - (A) $-9.25 \text{ kJ mol}^{-1}$

(B) $-103.04 \text{ kJ} \cdot \text{mol}^{-1}$

(C) $+ 51.52 \text{ kJ mol}^{-1}$

- (D) 18.5 kJ mol⁻¹
- Q.53 The value of $\Delta G^*,$ given K_{eq} as 1.7, at 23°C will be
 - (A) -- 17.19 kJ mol⁻¹

(B) -19.8 kJ mol⁻¹

(C) + 52.82 kJ mol⁻¹

(D) -117.07 kJ mol⁻¹

班丁

Statement for Linked Answer Questions 54 and 55:

During bioconversion of sucrose to citric acid by Aspergillus niger final samples of 6 batches of fermentation broth were analyzed for citric acid content. The results (in g/L) were found to be 47.3, 52.2, 49.2, 52.4, 49.1 and 46.3.

- Q.54 The mean value of acid concentration will be
 - (A) 49.4

(B) 51.0

(C) 48.2

- (**D**) 50.8
- Q.55 The standard deviation for the above results is
 - (A) 2.49

(B) 3.0

(D)

5.91

(C) 1.84

BT

General Aptitude (GA) Questions

O.	56 -	0.60	carry	one	mark	each.
----	------	------	-------	-----	------	-------

Q.56 -	Q.60 carry one mark each.						
Q.56	Which of the following options is the closest in meaning to the word below: Circuitous						
	(A) cyclic (B) indirect (C) confusing (D) crooked						
Q.57	The question below consists of a pair of related words followed by four pairs of words. Select the pair that best expresses the relation in the original pair. Unemployed: Worker						
	(A) fallow: land (B) unaware: sleeper (C) wit: jester (D) renovated: house						
Q.58	Choose the most appropriate word from the options given below to complete the following sentence: If we manage to our natural resources, we would leave a better planet for our children.						
	(A) uphold (B) restrain (C) cherish (D) conserve						
Q.59	Choose the most appropriate word from the options given below to complete the following sentence: His rather casual remarks on politics his lack of seriousness about the subject.						
	(A) masked (B) belied (C) betrayed (D) suppressed						
Q.60	25 persons are in a room. 15 of them play hockey, 17 of them play football and 10 of them play both hockey and football. Then the number of persons playing neither hockey nor football is:						
	(A) 2 (B) 17 (C) 13 (D) 3						
Q.61 -	Q.65 carry two marks each.						
Q.61	Modern warfare has changed from large scale clashes of armies to suppression of civilian populations. Chemical agents that do their work silently appear to be suited to such warfare; and regretfully, there exist people in military establishments who think that chemical agents are useful tools for their cause.						
	Which of the following statements best sums up the meaning of the above passage:						
	 (A) Modern warfare has resulted in civil strife. (B) Chemical agents are useful in modern warfare. (C) Use of chemical agents in warfare would be undesirable. (D) People in military establishments like to use chemical agents in war. 						

11/16

8T

(D) IHSG

2010					87		
Q.62	If $137 + 276 = 4$	135 how much is 731 + 6°	72?				
	(A) 534	(B) 1403	(C) 1623	(D) 1513			
Q.63	5 skilled workers can build a wall in 20 days; 8 semi-skilled workers can build a wall in 25 days; 10 unskilled workers can build a wall in 30 days. If a team has 2 skilled, 6 semi-skilled and 5 unskilled workers, how long will it take to build the wall?						
	(A) 20 days	(B) 18 days	(C) 16 days	(D) 15 days			
Q.64	Given digits 2, 2 formed?	2. 3, 3, 3, 4, 4, 4, 4 how m	nany distinct 4 digit num	bers greater than 3000 car	ı be		
	(A) 50	(B) 51	(C) 52	(D) 54			
Q.65	1st January. The		any two successive siblin facts: e > Irfan's age + Saira's tween Gita and Saira is I	gs (that is born one after	another)		

(C) IGSH

END OF THE QUESTION PAPER

There are no twins.

(B) SGHI

In what order were they born (oldest first)?

(A) HSIG

ВТ

GATE

Previous year's Solved papers Life Sciences | Biotechnology

https://pathfinderacademy.in/