Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpu

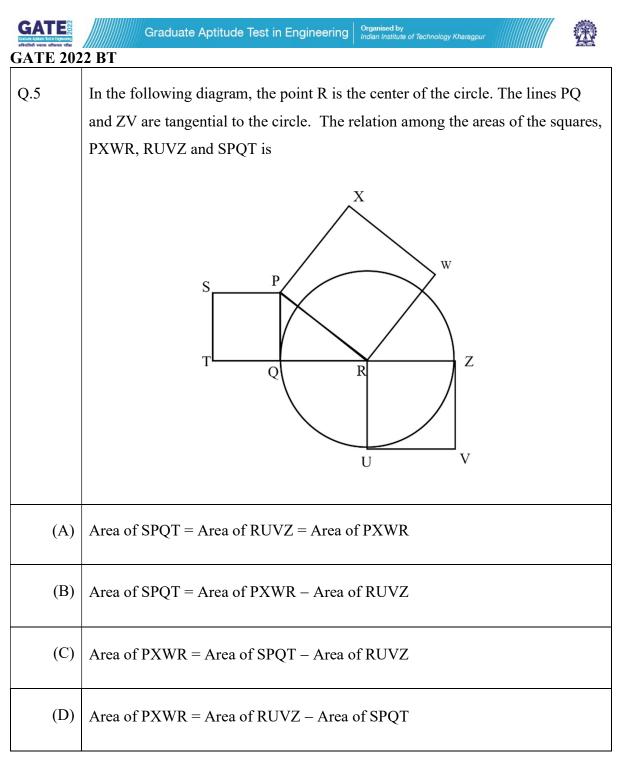
GATE 2022 BT GATE 2022 General Aptitude

GATE

Q.1 – Q.5 Carry ONE mark each.

Q.1	You should when to say
(A)	no / no
(B)	no / know
(C)	know / know
(D)	know / no

Q.2	Two straight lines pass through the origin $(x_0, y_0) = (0,0)$. One of them passes through the point $(x_1, y_1) = (1,3)$ and the other passes through the point $(x_2, y_2) = (1,2)$. What is the area enclosed between the straight lines in the interval [0, 1] on the <i>x</i> -axis?
(A)	0.5
(B)	1.0
(C)	1.5
(D)	2.0


GATE Control Adda to the Information Control Adda to the Informa	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
Q.3	If
	p:q = 1:2
	q: r = 4:3
	r:s = 4:5
	and u is 50% more than s , what is the ratio $p : u$?
(A)	2:15
(B)	16 : 15
(C)	1:5
(D)	16:45

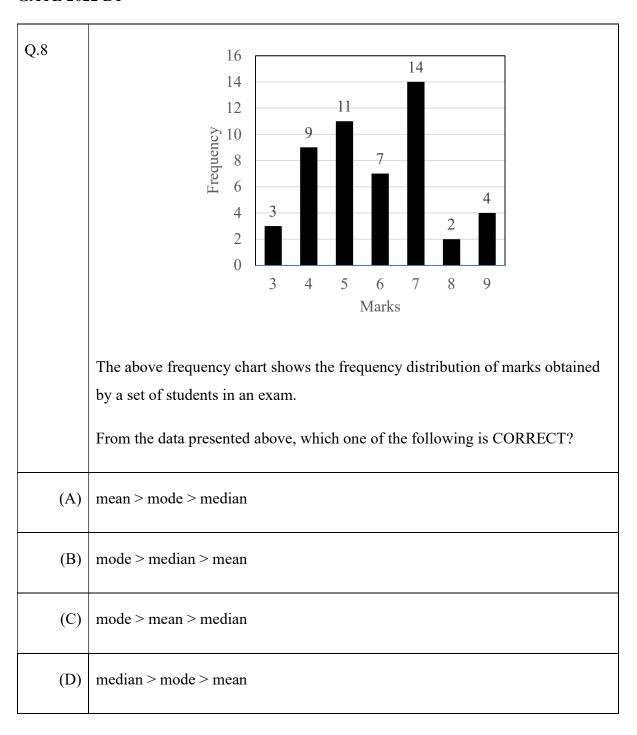
Graduate Aptitude Test in Engineering Organised by

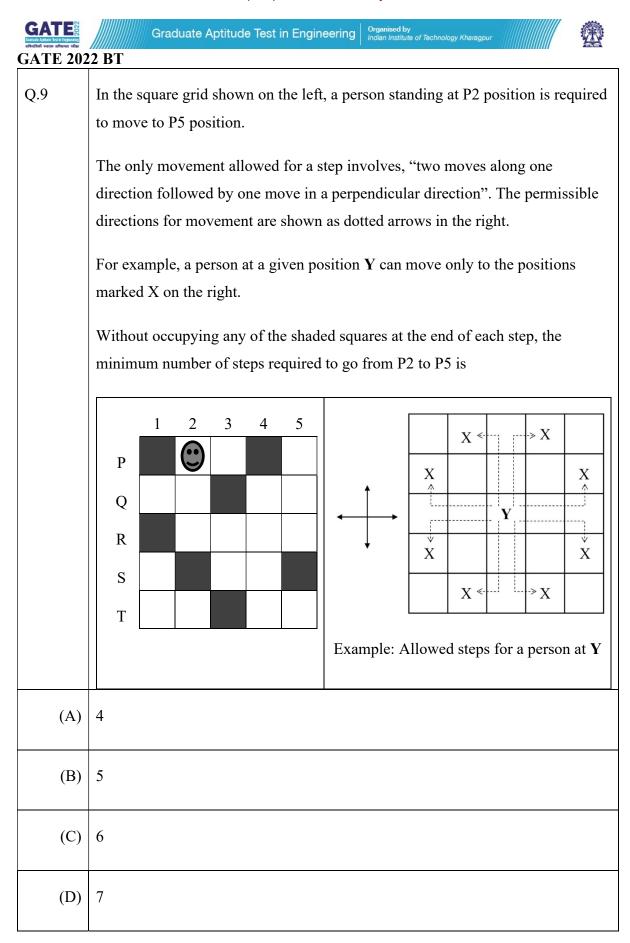
Q.4 Given the statements: P is the sister of Q. • Q is the husband of R. • R is the mother of S. • T is the husband of P. • Based on the above information, T is _____ of S. the grandfather (A) (B) an uncle (C) the father (D) a brother

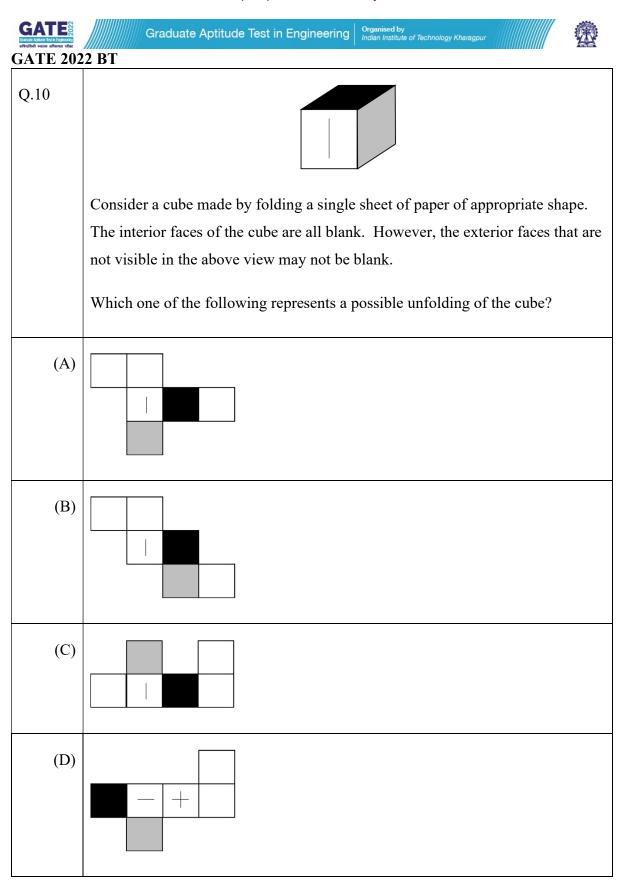
Q. 6 – Q. 10 Carry TWO marks each.

Q.6	Healthy eating is a critical component of healthy aging. When should one start eating healthy? It turns out that it is never too early. For example, babies who start eating healthy in the first year are more likely to have better overall health as they get older.Which one of the following is the CORRECT logical inference based on the information in the above passage?
(A)	Healthy eating is important for those with good health conditions, but not for others
(B)	Eating healthy can be started at any age, earlier the better
(C)	Eating healthy and better overall health are more correlated at a young age, but not older age
(D)	Healthy eating is more important for adults than kids

Graduate Aptitude Test in Engineering Organised by




GATE 2022 BT


Q.7	P invested ₹ 5000 per month for 6 months of a year and Q invested ₹ x per month for 8 months of the year in a partnership business. The profit is shared in proportion to the total investment made in that year. If at the end of that investment year, Q receives $\frac{4}{9}$ of the total profit, what is the value of x (in ₹)?	
(A)	2500	
(B)	3000	
(C)	4687	
(D)	8437	

Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpu

afterhal verse afferere effe

GATE	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
afterfault vorum afferent offer GATE 202	
Q.11 – Q.	35 Carry ONE mark each.
Q.11	What is the order of the differential equation given below?
	$\frac{d^2 y}{dx^2} - 6x = 3x^4 - 2x^3 + 2$
(A)	1
(B)	2
(C)	3
(D)	4
Q.12	If the eigenvalues of a 2×2 matrix P are 4 and 2, then the eigenvalues of the matrix P^{-1} are
(A)	0, 0
(B)	0.0625, 0.25
(C)	0.25, 0.5
(D)	2, 4

GATE GATE 202	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
Q.13	For a double-pipe heat exchanger, the inside and outside heat transfer coefficients are 100 and 200 W m ⁻² K ⁻¹ , respectively. The thickness and thermal conductivity of the thin-walled inner pipe are 1 cm and 10 W m ⁻¹ K ⁻¹ , respectively. The value of the overall heat transfer coefficient is W m ⁻² K ⁻¹ .
(A)	0.016
(B)	42.5
(C)	62.5
(D)	310

GATE determined with the second after the second se	Graduate Aptitude Test in Enginee	ring Organised by Indian Institute of Technology Kharagpur	
Q.14	Match the media component (Column I) with its role (Column II).		
	Column I	Column II	
	P. Sucrose	1. Anti-foam agent	
	Q. Zinc chloride	2. Nitrogen source	
	R. Ammonium sulphate	3. Carbon source	
	S. Silicone oil	4. Trace element	
(A)	P-1, Q-2, R-3, S-4		
(B)	P-2, Q-1, R-3, S-4		
(C)	P-3, Q-2, R-4, S-1		
(D)	P-3, Q-4, R-2, S-1		

GATE	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur			
GATE 202	22 BT			
Q.15	The binding free energy of a ligand to its receptor protein is -11.5 kJ mol ⁻¹ at 300 K. What is the value of the equilibrium binding constant?			
	Use $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$.			
(A)	0.01			
(B)	1.0			
(C)	4.6			
(D)	100.5			
Q.16	The overall stoichiometry for an aerobic cell growth is			
	$3C_6H_{12}O_6 + 2.5NH_3 + O_2 \rightarrow 1.5C_aH_bO_cN_d + 3CO_2 + 5H_2O$			
	What is the elemental composition formula of the biomass?			
(A)	$C_9H_{18.2}O_5N_{1.667}$			
(B)	C ₉ H _{22.33} O ₆ N _{1.667}			
(C)	$C_{10}H_{18.2}O_5N_{1.667}$			
(D)	C ₁₀ H _{22.33} O ₆ N _{1.667}			

Graduate Aptitude Test in Engineering Organised by Indian Institute

Q.17	In binomial nomenclature, the name of a bacterial strain is written with the first letter of word(s) being capitalized.	
(A)	first	
(B)	second	
(C)	neither	
(D)	first and second	
Q.18	The type of nucleic acid present in λ -phage is	
(A)	Double stranded DNA	
(B)	Single stranded circular DNA	
(C)	Single stranded DNA	
(D)	Single stranded RNA	

GAATE हारावार स्रिकार देवी सिंहाफरान् संपिरियी भवान समिलमा चील	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
Q.19	 Which of the following statements about reversible enzyme inhibitors are CORRECT? P. Uncompetitive inhibitors bind only to the enzyme-substrate complex Q. Non-competitive inhibitors bind only at a different site from the substrate R. Competitive inhibitors bind to the same site as the substrate
(A)	P and Q only
(B)	P and R only
(C)	Q and R only
(D)	P, Q and R

GATE Gridat Activit Bell Herrissen afterfahl wares affarent efter	Graduate Aptitude Test in Eng	neering Organised by Indian Institute of Technology Kharagpur	
GATE 202 Q.20	Match the component of eukaryotic cells (Column I) with its respective function (Column II).		
	Column I Col	umn II	
	P. Lysosome 1. I	Digestion of macromolecules	
	Q. Peroxisome 2. I	Detoxification of harmful compounds	
	R. Glyoxysome 3. C	Conversion of fatty acids to sugar	
	S. Cytoskeleton 4. I	nvolvement in cell motility	
(A)	P-1, Q-2, R-3, S-4		
(B)	P-2, Q-1, R-3, S-4		
(C)	P-3, Q-1, R-2, S-4		
(D)	P-4, Q-3, R-1, S-2		

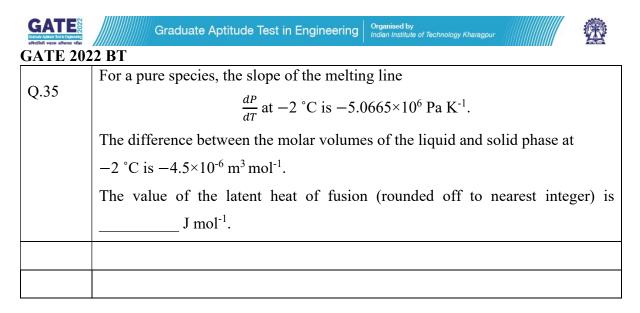
Organised by Indian Institute

GATE	
Graduate Aptitude Test in Engineering	
রসিয়ারিকী হলাচে রসিরালা হরিয়	

Graduate Aptitude Test in Engineering CATE 2022 BT

GATE 2022 DI		
In animal cells, the endogenously produced miRNAs silence gene expression by		
base pairing with the 3'-untranslated region of specific mRNAs		
blocking mRNA synthesis		
binding to the operator site		
base pairing with the 3' region of specific rRNAs		
Terpenoids are made of units		
amino acid		
carbohydrate		
isoprene		
triacylglycerol		

Graduate Aptitude Test in Engineering 2 BT	Organised by Indian Institute of Technology Kharagpur	
Match the microbial product (Column I) with its respective application (Column II).		
Column I	Column II	
P. Methane	1. Biosurfactant	
Q. Glycolipids	2. Bioplastic	
R. Polyhydroxy alkanoate	3. Biofuel	
P-1, Q-2, R-3		
P-2, Q-1, R-3		
P-3, Q-2, R-1		
P-3, Q-1, R-2		
	2 BT Match the microbial product (Column I) v (Column II). Column I P. Methane Q. Glycolipids R. Polyhydroxy alkanoate P-1, Q-2, R-3 P-2, Q-1, R-3 P-3, Q-2, R-1	Column I Column II P. Methane 1. Biosurfactant Q. Glycolipids 2. Bioplastic R. Polyhydroxy alkanoate 3. Biofuel P-1, Q-2, R-3


GATE Gate Actuals Tell Information afterfailt want affording the	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur	
GATE 202		
Q.24	Which of the following is NOT used for generating an optimal alignment of two nucleotide sequences?	
(A)	Gap penalties	
(B)	Match scores	
(C)	Mismatch scores	
(D)	Nucleotide composition	
Q.25	The recognition sequences of four Type-II restriction enzymes (RE) are given below. The symbol (\downarrow) indicates the cleavage site. Identify the RE that generates sticky ends.	
(A)	RE1 - 5' $G^{\downarrow}GATCC$ 3'	
(B)	RE2 - 5' CTG \downarrow CAG 3'	
(C)	RE3 - 5' CCC \downarrow GGG 3'	
(D)	RE4 - $5' \text{ AG}^{\downarrow} \text{CT} 3'$	

GATE 202	2 BT
Q.26	Among individuals in a human population, minor variations exist in nucleotide sequences of chromosomes. These variations can lead to gain or loss of sites for specific restriction enzymes. Which of the following technique is used to identify such variations?
(A)	Polymerase dependent fragment insertion
(B)	Real-time polymerase chain reaction
(C)	Restriction fragment length polymorphism
(D)	Reverse transcriptase polymerase chain reaction
Q.27	Assuming independent assortment and no recombination, the number of different combinations of maternal and paternal chromosomes in gametes of an organism with a diploid number of 12 is
Q.28	A microorganism is grown in a batch culture using glucose as a carbon source. The apparent growth yield is $0.5 \frac{\text{g biomass}}{\text{g substrate}}$. The initial concentrations of biomass and substrate are 2 g L ⁻¹ and 200 g L ⁻¹ , respectively. Assuming that there is no endogenous metabolism, the maximum biomass concentration that can be achieved is g L ⁻¹ .

GATE Control Acquired the International Control Acquired to the International Control Acquire	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
Q.29	The degree of reduction of lactic acid ($C_3H_6O_3$) is
Q.30	Consider a nonlinear algebraic equation, $xlnx + x - 1 = 0$. Using the Newton-Raphson method, with the initial guess of $x_0 = 3$, the value of x after one iteration (rounded off to one decimal place) is
Q.31	The probability density function of a random variable X is $p(x) = 2e^{-2x}$. The probability $P(1 \le X \le 2)$ (rounded off to two decimal places) is
Q.32	The maximum value of the function $f(x) = 3x^2 - 2x^3$ for $x > 0$ is
Q.33	The specific growth rate of a yeast having a doubling time of 0.693 h (rounded off to nearest integer) ish ⁻¹ .
Q.34	A fermentation broth of density 1000 kg m ⁻³ and viscosity 10 ⁻³ kg m ⁻¹ s ⁻¹ is mixed in a 100 L fermenter using a 0.1 m diameter impeller, rotating at a speed of 2 s ⁻¹ . The impeller Reynolds number is

Q.36 – Q.65 Carry TWO marks each.

Q.36	Which of the following conditions will contribute to the stability of a gene pool in a natural population?
	P. Large populationQ. No net mutationR. Non-random matingS. No selection
(A)	P only
(B)	P and Q only
(C)	P and R only
(D)	P, Q and S only

GATE Gate di Britante aftetisti vene afteren vene GATE 202	Graduate Aptitude Test in Engineering	Organised by Indian Institute of Technology Kharagpur
Q.37	Match the media component used in mammalian cell culture (Column I) with its respective role (Column II).	
	Column I	Column II
	P. Hydrocortisone	1. Mitogen
	Q. Fibronectin	2. Vitamin
	R. Epidermal growth factor	3. Hormone
	S. Riboflavin	4. Cell attachment
(A)	P-3, Q-4, R-1, S-2	
(B)	P-3, Q-4, R-2, S-1	
(C)	P-4, Q-3, R-1, S-2	
(D)	P-4, Q-3, R-2, S-1	

GATE and Address of Horses after the search of the search after the search of the search after the search of the search after the search of the search of the search after the search of	Graduate Aptitude Test in E	Engineering Organised by Indian Institute of Technology Kharagpur	
Q.38			
	Column I	Column II	
	P. B cells	1. Humoral immunity	
	Q. Neutrophils	2. Cytotoxicity	
	R. T cells	3. Histamine-associated allergy	
	S. Mast cells	4. Phagocytosis	
(A)	P-1, Q-2, R-3, S-4		
(B)	P-1, Q-4, R-2, S-3		
(C)	P-4, Q-3, R-1, S-2		
(D)	P-4, Q-3, R-2, S-1		

GATE Gate deleter deleter GATE 202	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
Q.39	A 2×2 matrix P has an eigenvalue $\lambda_1 = 2$ with eigenvector $x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and (1)
	another eigenvalue $\lambda_2 = 5$, with eigenvector $x_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. The matrix P is
(A)	$\begin{pmatrix} 2 & 0 \\ 0 & 5 \end{pmatrix}$
(B)	$\begin{pmatrix} 2 & 3 \\ 0 & 5 \end{pmatrix}$
(C)	$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
(D)	$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

GATE हाउद्यावर मुस्तकार स्थित का सार्वकार का कपियांप्रिको स्थापक अणिवाणा स्वीवर	Graduate Aptitude Test in En	gineering Organised by Indian Institute of Technology Kharagpur
GATE 20	22 BT	
Q.40	Match the stationary phase (Column I) with its corresponding chromatography	
	technique (Column II).	
	Column I	Column II
	P. Protein A	1. Size exclusion chromatography
	Q. Sephadex	2. Ion-exchange chromatography
	R. Phenylsepharose	3. Affinity chromatography
	S. Diethylaminoethyl cellulose	4. Hydrophobic interaction chromatography
(A)	P-1, Q-4, R-2, S-3	
(B)	P-3, Q-1, R-4, S-2	
(C)	P-3, Q-4, R-2, S-1	
(D)	P-4, Q-1, R-3, S-2	

GATE हतदायर A(साअर Test In Erginssorg) वर्षिपरियो प्रातन वरिवाणा जीवा	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
GATE 202	
Q.41	Which of the following statements are CORRECT for a controller?
Q.+1	P. In a proportional controller, a control action is proportional to the error
	Q. In an integral controller, a control action is proportional to the derivative
	of the error
	R. There is no "offset" in the response of the closed-loop first-order process
	with a proportional controller
	S. There is no "offset" in the response of the closed-loop first-order process
	with a proportional-integral controller
(A)	P and Q only
(D)	D and D only
(B)	P and R only
(C)	P and S only
(D)	Q and S only

GATE GATE 202	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
Q.42	Which of the following are CORRECT about protein structure?
	 P. Secondary structure is formed by a repeating pattern of interactions among the polypeptide backbone atoms Q. Tertiary structure is the three-dimensional arrangement of the polypeptide backbone atoms only
	R. Quaternary structure refers to an assembly of multiple polypeptide subunits
(A)	P and Q only
(B)	P and R only
(C)	Q and R only
(D)	P, Q and R

Organised by Indian Institute Graduate Aptitude Test in Engineering

free 2022 BT

GATE 202	
Q.43	The enzymes involved in ubiquitinylation of cell-cycle proteins are
(A)	E_1 and E_2 only
(B)	E ₁ and E ₃ only
(C)	E_1 and E_4 only
(D)	E_1 , E_2 and E_3
Q.44	The maximum parsimony method is used to construct a phylogenetic tree for a set of sequences. Which one of the following statements about the method is CORRECT?
(A)	It predicts the tree that minimizes the steps required to generate the observed variations
(B)	It predicts the tree that maximizes the steps required to generate the observed variations
(C)	It predicts the tree with the least number of branch points
(D)	It employs probability calculations to identify the tree

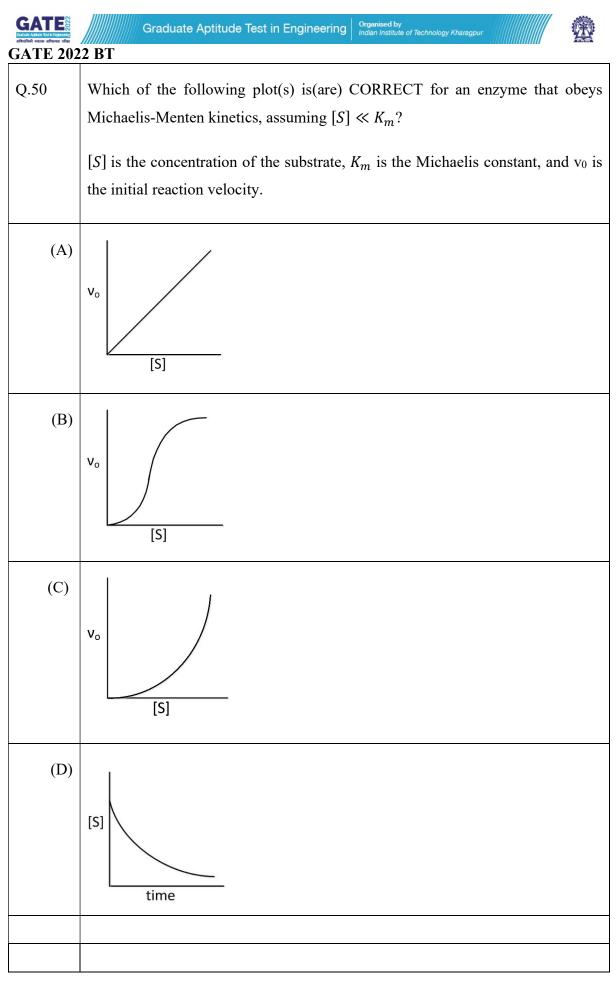
GATE	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
GATE 202	2 BT
Q.45	Which of the following spectroscopic technique(s) can be used to identify all the functional groups of an antibiotic contaminant in food?
	P. Infrared
	Q. Circular dichroism
	R. Nuclear magnetic resonance
	S. UV-Visible
(A)	P only
(B)	P and R only
(C)	P, Q and R only
(D)	P, Q, R and S

Graduate Aptitude Test in Engineering

Organised by Indian Institute

of Techr

oloav Kharaapi

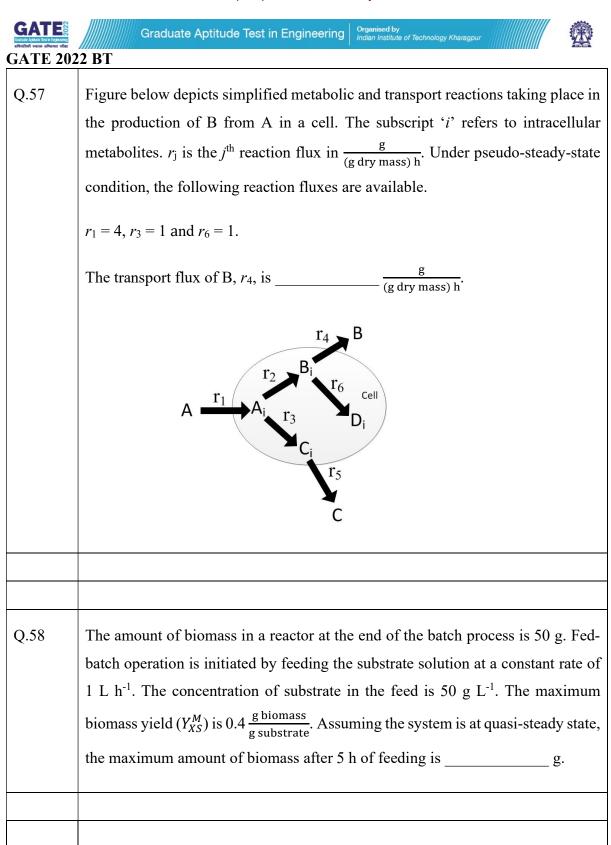

GATE 2022	BT

GATE 202	2 01
Q.46	Adenine can undergo a spontaneous change to hypoxanthine in a cell, leading to a DNA base pair mismatch. The CORRECT combination of enzymes that are involved in repairing this damage is
(A)	Nuclease, DNA polymerase, DNA ligase
(B)	Nuclease, DNA ligase, helicase
(C)	Primase, DNA polymerase, DNA ligase
(D)	Primase, helicase, DNA polymerase
Q.47	Consider the ordinary differential equation $\frac{dy}{dx} = f(x, y) = 2x^2 - y^2$. If $y(1) = 1$, the value(s) of $y(1.5)$, using the Euler's implicit method $[y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})]$ with a step size of $h = 0.5$, is (are)
(A)	$-1 - 5\sqrt{0.3}$
(B)	$-1 + 5\sqrt{0.3}$
(C)	$1 + 5\sqrt{0.3}$
(D)	$1 - 5\sqrt{0.3}$

Graduate Aptitude Test in Engineering

Organised by Indian Institute

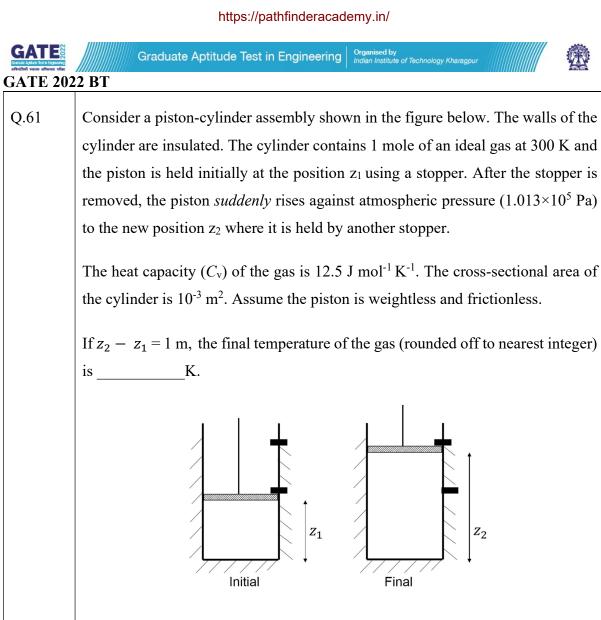
2 BT
Which of the following statements are CORRECT for an enzyme entrapped in a spherical particle?
Effectiveness factor is ratio of the reaction rate with diffusion-limitation to the reaction rate without diffusion-limitation
Internal diffusion is rate-limiting at low values of Thiele modulus
Effectiveness factor increases with decrease in Thiele modulus
Internal diffusion-limitation can be reduced by decreasing the size of the particle
Which of the following is(are) COMMON feature(s) for both aerobic and anaerobic bacterial cultures?
Glycolysis
NAD ⁺ is the oxidising agent
Oxidative phosphorylation
Two net ATP molecules formed per glucose molecule


Organised by Indian Institute

GATE Endezie Ardensie Test in Enderstratig afbestikel venore afberent vehet Graduate Aptitude Test in Engineering

GATE 202	2 BT
GATE 202	
Q.51	Which of the following statement(s) is(are) CORRECT regarding the <i>lac</i> operon in <i>E. coli</i> when grown in the presence of glucose and lactose?
(A)	At low glucose level, the operon is activated
(B)	At high glucose level, the operon is activated to enable the utilization of lactose
(C)	The <i>lac</i> repressor binds to operator region inactivating the operon
(D)	Binding of lactose to the <i>lac</i> repressor induces the operon
Q.52	Emerging viruses such as SARS-CoV2 cause epidemics. Which of the following process(es) contribute to the rise of such viruses?
(A)	Mutation of existing virus
(B)	Jumping of existing virus from current to new hosts
(C)	Spread of virus in the new host population
(D)	Replication of virus outside a host

GATE Bradeate Aphanie Test In Erginssony affettifted) wanne affertenn withen	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
GATE 202	<u>2 BT</u>
Q.53	Introduction of foreign genes into plant cells can be carried out using
(A)	Agrobacterium
(B)	CaCl ₂ mediated plasmid uptake
(C)	Electroporation
(D)	Gene gun
Q.54	Which of the following statement(s) regarding trafficking in eukaryotic cells is(are) CORRECT?
(A)	Dynamin binds GTP and is involved in vesicle budding
(B)	Dynamin is involved in cytoskeletal remodelling
(C)	Dynein binds ATP and is involved in movement of organelles along microtubules
(D)	Dynein binds GTP and is involved in movement of organelles along microtubules


 Graduate Aptitude Test in Engineering
 Organised by redenviolations of Technology Relargeur
 Image: Construct of the second second

Graduate Aptitude Test in Engineering	Organised by Indian Institute

GATE 2	022 BT
Q.59	An enzyme catalyzes the conversion of substrate A into product B. The rate equation for this reaction is
	$-r_A = \frac{C_A}{5 + C_A} \mod L^{-1} \min^{-1}$
	Substrate A at an initial concentration of 10 mol L ⁻¹ enters an ideal mixed flow
	reactor (MFR) at a flow rate of 10 L min ⁻¹ . The volume of the MFR required for
	50% conversion of substrate to product is L.
Q.60	Liquid-phase mass transfer coefficient (k_L) is measured in a stirred tank vessel using <i>steady-state method</i> by sparging air. Oxygen uptake by the microorganism is measured. The bulk concentration of O ₂ is 10 ⁻⁴ mol L ⁻¹ . Solubility of O ₂ in water at 25 °C is 10 ⁻³ mol L ⁻¹ .
	If the oxygen consumption rate is 9×10^{-4} mol L ⁻¹ s ⁻¹ , and interfacial area is $100 \text{ m}^2/\text{m}^3$, the value of k_{L} is cm s ⁻¹ .

Graduate Aptitude Test in Engine 2 BT	Deering Organised by Indian Institute of Technology Kharagpur
the specific growth rate of yeast is $2C_6H_{12}O_6 + 0.2NH_3 + 10.35O_2 \rightarrow CH$	we under aerobic condition in a bioreactor and 0.5 h^{-1} . The overall reaction of the process is $H_{1.8}O_{0.5}N_{0.2}+0.2C_2H_6O+10.6CO_2+10.8H_2O$ different compounds are tabulated below with N ₂ at standard conditions.
Compound	Heat of combustion (kJ mol ⁻¹)
$C_6H_{12}O_6$	2802
NH ₃	383
CH _{1.8} O _{0.5} N _{0.2}	560
C ₂ H ₆ O	1366
The specific rate of heat production kJ mol ⁻¹ h ⁻¹ .	n (rounded off to nearest integer) is
	2 BT Consider the growth of <i>S. cerevisia</i> the specific growth rate of yeast is $2C_6H_{12}O_6 + 0.2NH_3 + 10.35O_2 \rightarrow CH$ The heat of combustion values for a the reference to CO_2 , H_2O , O_2 , and Compound $C_6H_{12}O_6$ NH_3 $CH_{1.8}O_{0.5}N_{0.2}$ C_2H_6O The specific rate of heat production

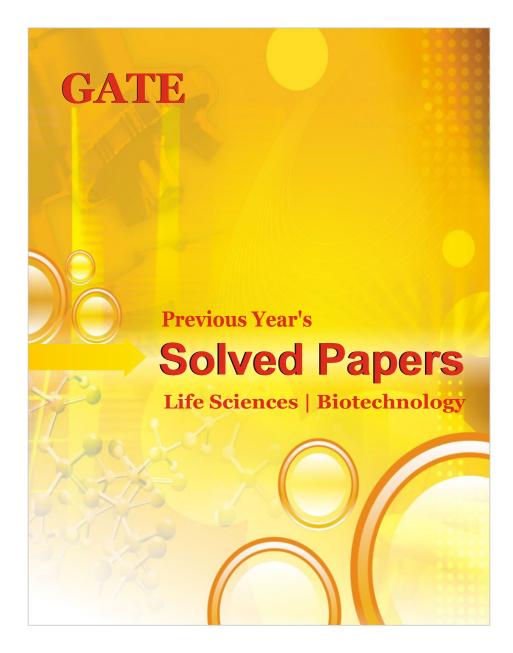
https://pathfinderacademy.in/

	ntitudo "	Foot in F	Engli	Engineering	Organised by
uale A	pullude	iest ir	i Engi	neening	Indian Institute of Te

A pilot sterilization was carried out in a vessel containing 100 m ³ medium with an initial spore concentration of 10 ⁸ spores/ml. The accepted level of contamination after sterilization is 1 spore in the entire vessel. The specific death rate constant for the spore is 2 min ⁻¹ at 121 °C. Assuming no death takes place during the heating and cooling cycles, the holding time at 121 °C (rounded off to nearest integer) ismin.
A circular plasmid has three different but unique restriction sites for enzymes 'a', 'b' and 'c.' When enzymes 'a' and 'b' are used together, two fragments of equal size are generated. Enzyme 'c' creates fragments of equal size only from one of the fragments generated by those cleaved by 'a' and 'b'. The plasmid is treated with a mixture of 'a', 'b' and 'c' and analysed by agarose gel electrophoresis. The number of bands observed in the gel is
A bacterial strain is grown in nutrient medium at 37 °C under aerobic conditions. The medium is inoculated with 10^2 cells from a seed culture. If the number of
cells in the culture is 10 ⁵ after 10 hours of growth, the doubling time of the strain (rounded off to nearest integer) ish.

END OF THE QUESTION PAPER

GATE


Previous year's Solved papers Life Sciences | Biotechnology

https://www.amazon.in/GATE-Previous-Solved-Papers-Sciences-Biotechnology/dp/9380473036/

Flipkart 🙀

https://www.flipkart.com/previous-year-s-solved-papers-year-2007-2020-gate-life-sciences/p/itm132748aaf7f31?

